Affichage des articles dont le libellé est électricité. Afficher tous les articles
Affichage des articles dont le libellé est électricité. Afficher tous les articles

mercredi 4 septembre 2019

Revolution du stockage par batteries stationnaires




Sous la plume de Vincent Collen, le quotidien « Les Echos » a publié le 20 août 2019 un article intitulé :

« La révolution du stockage de l’électricité est en marche »


Notre conclusion

Le développement, nullement improbable, des batteries de stockage de l’énergie électrique de réseau, sera à inscrire dans la liste des erreurs stratégiques majeures, en concurrence avec le véhicule tout-électrique. Ces erreurs auront pour effet de retarder l’indispensable et urgente baisse des émissions de CO2, car l’allocation des ressources publiques ou privées disponibles aura été loin de l’optimum.


Message

Notre blog avait largement traité ce sujet dans 16 messages publiés en 2014 et figurant dans le sommaire « Energie ». Notamment, l’utilisation ou la réutilisation des batteries Li-Ion de l’automobile pour le stockage de l’énergie de réseau a été traité dans un message qui a conservé toute sa pertinence. 
Le texte intégral des « Echos » qui prévoit une très forte croissance du marché des batteries stationnaires d’énergie électrique, figure ci-dessous sans les photos, est résumé en bleu ci-après, avec nos commentaires :

Abréviations :
  • K pour kilo (000)
  • M pour méga (000 000)
  • G pour Giga (000 000 000)

 A. Progression du marché de 16% par an pour atteindre 27 G$/an en 2030 et 58 G$/an en 2050.
Le marché actuel n’est pas mentionné. Les croissances ne sont pas cohérentes avec les montants :
  • La progression annoncée de 2030 à 2050 ne correspond qu’à une croissance en valeur de 4% par an.
  • Une progression de 16% sur cette même période amènerait le marché à 525 G$ en 2050, invraisemblable.
  • Ces chiffres sont donc peu crédible…
 B. Progression de la capacité de stockage d’un facteur 100, de 10 GW à 1 000 GW en 2040.
  • Il s’agit en réalité de GWh (énergie) et non de GW (puissance).
  • Une progression d’un facteur 100 en 21 ans correspond à une croissance en volume de 26% par an, à nouveau incohérente avec les 4% et les 16% en valeur du paragraphe précédent, même en tenant compte d’une baisse de prix.

 C. Les éoliennes et PPV sont indispensables à la réduction des gaz à effet de serre, mais leur production est intermittente.
  • Les éoliennes et PPV peuvent en effet contribuer à la réduction des GES, notamment aux basses latitudes, mais ne sont nullement indispensables, car d’autres solutions décarbonées existent : le nucléaire, l’hydraulique, le biogaz, capables de produire en continu ou à la demande aux prix de marché actuels.
  • Le simple passage du charbon au gaz à cycle combiné réduit l’émission de CO2 des deux tiers, et est possible à court terme (essentiel, car il y a urgence) à un prix raisonnable.
  • Le recours aux énergie intermittentes restituées après stockage, n’a donc de sens que si elles restent compétitives après coût de stockage.
D. Le marché se développe parce que l’écart de prix de marché du MWh entre les périodes de production insuffisante (crêtes) et excédentaires (étiage) ne cesse d’augmenter.

L’affirmation est exacte, mais doit être explicitée et complétée :
  • La production des PPV sous les latitudes moyennes (Europe, USA) est contracyclique : élevée pendant l’étiage de consommation des journées d’été, et nulle pendant les pointes de consommation qui se situent toujours la nuit en hiver. Il en va différemment dans les pays tropicaux, où les pointes de consommations dues aux climatisations coïncident avec la production des PPV. Ces derniers  n’ont donc aucun intérêt sous nos latitudes.
  • Il est possible de réduire les pointes de consommation par un tarif dynamique (« yield management ») qui réduit alors la demande par augmentation du prix.

E. Le prix des grosses batteries Li-Ion va baisser de 360 $/KWh actuellement à 170 $ en 2030. Des projets sont lancés :
  • 1,8 GWh en Californie en 2020
  • 3 GWh à New-York en 2030
  • Remplacement de centrales de pointe à charbon ou gaz
  • 100 MWh d’ici 2 ans
  • Et jusqu’à 1 GWh
  • Ils aboutiront à 80 % d’énergies renouvelables dans certains états ou pays.
Tous ces belles prévisions doivent être évaluées économiquement.
  • Le coût d’un MWh solaire produit par PPV est au minimum de 80 $ 
  • Une batterie perd 30% de sa capacité en environ 1 500 cycles. Si on la réforme quand sa capacité tombe au tiers de sa valeur initiale, elle aura stocké environ 3 000 fois sa capacité initiale. Le seul prix de l’usure de la batterie est donc 360 M$ / 3000 cycles = 120 $ 
  • Son rendement (Energie restituée / énergie reçue) est d’environ 80%.
  • Le prix du MWh restitué est donc : (80 $ +120 $) / 80% = 250 $/MWh
  • Or le prix de marché se situe entre 40 et 200 $/MWh
Une autre comparaison est éclairante : Sur leurs durées de vie :
  • Une batterie de 1 MWh coûte 360 K$ et restitue 3 000 MWh
  • Un EPR coûte 4 000 K$ par MW (11 fois plus) et restitue 240 000 MWh (80 fois plus) en 40 ans à 70% de sa capacité, avec un coût marginal extrêmement bas.
  • Il est donc 7 fois moins cher, et finalement plus écologique, de produire de l’électricité décarbonée que de la stocker, même si le facteur de charge des EPR devait ainsi baisser quelque peu.
La prévision d’une baisse de prix de 360 $ à 170 M€/MWh en 2030 est contestable. La « courbe d’expérience » qui sert de base au Boston Consulting Group, reconnue comme très pertinente, prévoit une baisse de 10% à 20% du prix de revient de n’importe quel produit ou service industriel pour chaque doublement de la quantité cumulée produite. Partant du prix actuel, et en se basant sur 15% appliqué aux batteries Li-Ion, et sur l’une ou l’autre des lois de croissance envisagées en A. ci-dessus, on arrive aux alentours de 320 $/MWh, soit pas loin du double du prix annoncé, sans baisse massive du prix de revient du MWh restitué.

En plus, la production diurne d’une ferme solaire varie d’un facteur 10 entre le solstice d'été et le solstice d'hiver : ceci signifie que de novembre à février le stockage diurne de  ne sera pas possible faute de production suffisante en journée, car il n’est évidemment pas envisageable de stocker l’énergie sur une demi-année au lieu d’une demi-journée, pour un prix 365 fois plus élevé ! Le stockage d’énergie PPV ne se développera donc pas sans subventions :
  • Par défaut de production de novembre à février
  • Par coût excessif, même aux périodes favorables


F. Le stockage à domicile est promis à un bel avenir grâce à des ménages prêts à faire des sacrifices pour participer à la révolution énergétique.

C’est probablement exact, quoique difficilement prévisible. Le « Green washing » par les médias est tellement intense que de nombreux citoyens éco-responsables seront tentés d’investir dans des batteries domestiques stationnaires pour ne consommer que de l’électricité supposée verte, en ne se préoccupant ni de leur pertinence économique, ni de leur durée de vie, ni de leur caractère intrinsèquement polluant, émetteur de CO2 et consommateur de matières premières rares importées. Si en plus, des politiciens bien-pensants, mais mal informés, y ajoutent quelques aides publiques, alors le succès est probable pour ce marché, ce qui sera un échec pour la planète !


Annexe: 

Notre analyse des marchés, prix et quantités des batteries stationnaires Li-Ion basée sur les chiffres publiés par Les Echos.
  • Cellules vertes : données "Les Echos"
  • Cellules rouges : conclusions discordantes
  • Cellules bleues : hypothèses de calcul réduisant les discordances



 ______________________________________________

Texte intégral des « Echos »
Vincent Collen @VincentCollen

Stocker l’électricité pour compenser l’intermittence de la production des éoliennes et des panneaux photovoltaïques est l’un des grands défis à relever pour réussir la transition énergétique. Ce marché du stockage est encore balbutiant mais devrait progresser de 16 % par an en moyenne pour atteindre 27 milliards de dollars en 2030, estime Bank of America-Merrill Lynch, qui vient de publier une étude sur ce sujet. Il atteindrait 58 milliards en 2040. A cet horizon, pas moins de 6 % de la production électrique mondiale pourrait être stockée dans des batteries, prévoient les experts de la banque américaine. Pour Bloomberg NEF, on passerait des capacités très modestes installées aujourd’hui sur la planète (moins de dix gigawatts, l’équivalent de dix réacteurs nucléaires) à plus de 1.000 gigawatts en 2040.

Les moteurs de cette expansion sont puissants et ils s’alimentent les uns les autres. Le premier, c’est l’essor des énergies renouvelables, indispensable pour réduire les émissions de gaz à effet de serre. Or les éoliennes ne produisent pas d’électricité quand le vent ne souffle pas. Idem pour les panneaux photovoltaïques lorsqu’il n’y a pas de lumière. Bref, les renouvelables produisent parfois trop lorsque la demande est faible, et pas assez lorsqu’elle est forte. Le stockage de l’électricité permet de lisser ces pics et ces creux. Avec une capacité de stockage de quatre heures, une ferme solaire générant de l’électricité pendant huit heures verrait ainsi sa production effective portée à douze heures, soit un gain de 50 %.

Le marché est appelé à se développer parce que l’écart de prix entre les périodes de pic de la demande et celles où les capacités sont excédentaires ne cesse d’augmenter. Les acteurs du stockage peuvent donc saisir un créneau qui devient rentable. Dans l’idéal, il faudrait réussir à stocker l’énergie pendant quatre à six heures, explique l’étude de Bank of America. Mais, même en la conservant deux à trois heures seulement dans des batteries, on pourrait augmenter la part des renouvelables dans la production d’électricité de 10 à 15 %, ce qui la porterait de 10 % aujourd’hui au-delà de 60 % au milieu du siècle, estime la banque.

Le stockage prendra plusieurs formes. L’essentiel sera réalisé par les compagnies d’électricité, grâce à des batteries disposées à proximité d’un champ d’éoliennes ou d’une ferme solaire, par exemple. En complément, les foyers participeront eux aussi au mouvement, en installant une batterie dans leur cave ou en déchargeant l’énergie stockée dans leur véhicule électrique lorsque ce dernier n’est pas utilisé.

Autre atout indispensable pour le stockage des énergies vertes, la baisse indispensable du prix des batteries. Entre 2010 et 2018, le coût d’une batterie lithium-ion a déjà décliné de 85 %, selon Bloomberg NEF. Il devrait encore baisser de moitié d’ici à 2025, notamment grâce aux économies d’échelle réalisées avec l’essor du parc de véhicules électriques. « Le prix des grosses batteries pour les compagnies d’électricité va passer de 360 dollars par kilowattheure aujourd’hui à 170 dollars en 2030 », calcule Yayoi Sekine, analyste chez Bloomberg NEF.

Des projets ambitieux
Malgré cette chute, le développement du stockage nécessitera des investissements massifs : 662 milliards de dollars au cours des vingt prochaines années, toujours selon Bloomberg NEF. Certaines régions sont en avance, à commencer par quelques Etats américains, dont les politiques énergétiques mettent l’accent sur le stockage, poursuit Bank of America. La Californie vise ainsi 1,8 gigawatt de capacités installées dès 2020, New Yor k 3 gigawatts en 2030. Des compagnies d’électricité comme XCel en Floride ont déjà proposé de remplacer des centrales à gaz ou au charbon par des batteries géantes associées à des capacités de production solaire ou éolienne. L’Europe et l’Asie sont moins avancées, mais le Royaume-Uni, l’Allemagne, l’Australie, la Corée et la Chine développent aussi des projets ambitieux. « Des projets à 100 mégawatts permettant de stocker l’électricité pendant quatre heures se multiplient, confirme Yayoi Sekine. D’ici à deux ans, nous verrons émerger de très gros projets de stockage qui atteindront jusqu’au gigawatt [1.000 mégawatts, NDLR]. » Alors les équilibres de la planète énergie pourront être bouleversés, souligne Bank of America. Grâce au stockage, certains Etats américains ou pays européens pourraient voir la part du renouvelable dans leur production d’électricité dépasser 80% dès 2030.

Le stockage à domicile promis à un bel avenir

Tiré par, le marché du stockage résidentiel de l’électricité est appelé à quintupler au cours des cinq prochaines années en Europe, prévoit Wood Mackenzie

Le stockage de l’électricité à la maison, grâce à une batterie installée à la cave ou dans le garage, s’annonce comme un complément intéressant à l’essor des énergies renouvelables. Le marché mondial est encore très modeste, mais il commence à atteindre une taille significative dans les pays où s’est développée la production d’électricité à domicile, le plus souvent grâce à des panneaux photovoltaïques fixés sur les toits. En Europe, le stockage résidentiel de l’électricité sera multiplié par cinq au cours des cinq prochaines années, atteignant 6,6 gigawatts heures en 2024, prévoit le cabinet Wood Mackenzie.

Le marché est aujourd’hui concentré en Allemagne, où le gouvernement a encouragé l’essor du solaire résidentiel dès 2013. Les pouvoirs publics ont pris en charge jusqu’à 30 % du coût de l’installation les premières années. Cette part est tombée à 10 % l’an dernier et à zéro depuis le 1 er janvier. Mais l’impulsion a été suffisante pour que 125.000 foyers s’équipent, d’autant que le prix des panneaux et des batteries a chuté dans le même temps.

Participer à la révolution énergétique
 « Après ce succès en Allemagne, le stockage résidentiel commence à gagner d’autres pays d’Europe, en particulier en Italie et en Espagne », explique Rory McCarthy, analyste chez Wood Mackenzie. Selon lui, le marché peut désormais se développer sans subventions, car le prix de l’électricité générée à domicile se rapproche de celui qui est commercialisé par les fournisseurs. « On s’approche de la parité dans ces trois pays européens », constate l’expert.

« Le stockage à domicile était jusqu’à présent tiré par des ménages prêts à faire un sacrifice financier pour participer à la révolution énergétique », poursuit l’expert. C’est en train de changer. Au fur et à mesure que les tarifs de l’électricité augmentent en Europe, la production et le stockage à domicile seront adoptés, de plus en plus, comme une protection contre les hausses de prix des fournisseurs.

Le phénomène devrait moins toucher la France, car l’incitation y est moindre, l’électricité vendue par EDF et ses concurrents étant parmi les moins chères du continent, explique Rory McCarthy. Le développement devrait être également moins rapide au Royaume-Uni, où le pouvoir d’achat des ménages est sous pression. — V. C.



lundi 28 janvier 2019

VE 5 Traces Carbone du VE


Le VE : Innovation pérenne ou rêve écologiste ?
« Dans un monde inondé d’informations sans pertinence, le pouvoir appartient à la clarté. »  Yuval Noah Harari


VE5. - Traces carbone du VE 
  • Ce chapitre porte sur la comparaison entre un VT et un VE avec le même profil de mission :
    • 14 000 km par an x 12 ans
    • Ville, suburbain, routes, autoroutes
    • Remplacement des VT par des VE.
5.1. TC d’utilisation du VE

Elle est évidemment nulle : ni le chargeur, ni la batterie, ni le moteur électrique n’émettent de CO2. Le VE en tire son image de « zéro émission » dont on oublie trop souvent l’adjectif essentiel « locale ».

5.2. TC « puits » à la roue du VE

  • Comme le dit avec juste raison Jean-Marc Jancovici, éminent expert en trace carbone : « L’électricité ne sort pas du mur ! ». Elle est produite à partir des énergies primaires :
    • Charbon
    • Pétrole,
    • Gaz
    • Nucléaire
    • Hydraulique
    • Eolien
    • PV,
    • Divers…
  • Sa trace carbone, très différente selon les filières, est donc aussi :
    • Très différente entre pays, selon les filières installées
    • Variable dans le temps, selon le mix de production utilisé.
TC de l’électricité selon les filières de production

5.2.1. TC du nucléaire et des renouvelables
  • Le process est exempt de CO2 direct, mais il ne faut pas oublier la TC d’amortissement, égale à la TC d’investissement divisée par la durée de vie effective, qui est elle-même égale à la durée de vie en années multipliée par le facteur de charge défini comme « énergie produite sur l’année / énergie produite à 100% de la puissance installée ».
  • La TC du nucléaire est très basse, grâce à une durée de vie supérieure à 40 ans et un facteur de marche de 75%.
  • La TC de l’hydraulique est très basse aussi, avec une durée de vie presque illimitée, et en dépit d’un facteur de charge variable, mais généralement choisi par l’opérateur
  • Les nouveaux renouvelables ont une TC plus élevée en raison de  :
    • Une durée de vie beaucoup plus faible, 10 à 15 ans
    • Un facteur de charge très bas : 15% (PV) à 20% (éolien)
    • Un investissement sur énergie produite plus élevé que le nucléaire.

                            Le graphe ci-dessous, 2011, pas à jour : TC du PV à diviser par 2 à 3 en raison de la baisse de ses prix.

5.2.2. TC des énergies fossiles :

La TC du process est prépondérante sur celle des investissements. Ces filières sont très différenciées entre elles, selon deux paramètres :magne²
  • Le taux de carbone dans l’énergie primaire (C >> CnH2n+2 > CH4)
  • Le rendement du cycle de production les centrales à gaz à cycle combiné allient le T1 (selon Carnot) très élevé des combustions internes et le T2 bas des cycles à vapeur.


5.2.3. TC selon le lieu : France - Allemagne

La TC de la recharge d’un VE varie donc selon les filières de production utilisées, très différentes selon les pays. Des exemples très contrastés sont la France et Allemagne. En résumé la TC de 1 MWh produit est :
  • En France : 74 Kg
  • En Allemagne : 700 Kg, soit presque 10 fois plus
  • Sans parler du coût pour l’abonné, presque double en Allemagne.


Ceci résulte principalement de la politique énergétique allemande qui est un déni de réalité : Un investissement monstrueux (350 G€) en éolien intermittent et peu prévisibles, et en photovoltaïque (PV) mal adapté aux latitudes septentrionales sous lesquelles sa production hivernale est insignifiante, et évidemment nulle la nuit en toutes saisons, n’a pu compenser la sortie du nucléaire décidée pour des raisons idéologiques, et a amené un énorme développement du charbon et du lignite de Saxe extrêmement émetteur de CO2 et de pollutions variées. Pour plus de détail voir message dans ce blog : Le contre-exemple allemand.

5.2.4. TC selon le lieu : Ensemble du monde


(Source : Dossier CO2 « Les Echos » 3/12/2018)

  • TC : Avec 660 kg de CO2/Mwh final, le mix mondial 2017 est à peine meilleur que le mix allemand (700 Kg), et n’a pas changé depuis 1990
  • Mais la production électrique a beaucoup augmenté avec évolution du mix :
  • Les nouveaux renouvelables en cours de décollage, de 1,5% à 8,5%, mais leur pondération reste faible.
  • L’hydraulique en régression relative de 17,5% à 16%
  • Le nucléaire est resté constant en volume, donc relativement décroissant de 16% à 10,3%.
  • Malheureusement, le gaz s’est substitué uniquement au pétrole, la somme gaz + pétrole restant constante à 26,5%
  • Et le charbon reste, hélas, en tête et constant en pourcentage, c’est à dire en forte progression en volume…
  • Au global, les réductions d’émissions dues aux nouveaux renouvelables et au gaz ont été annulées par le recours croissant aux énergies fossiles.

On est donc, dans l’ensemble, très loin d’un véhicule électrique « zéro émission ». L’adjectif « locale » restera durable, si l’on ose dire !

5.2.5.  TC selon le moment : France

Dans un territoire donné, la trace carbone n’est pas constante : la demande en énergie varie dans le temps dans un facteur de l’ordre de 3, et les moyens mobilisés successivement pour satisfaire la demande dépendent de nombreux critères :
  • Les nouveaux renouvelables intermittents sont mobilisés les premiers malgré leur prix contractuel élevé parce qu’ils bénéficient d’une priorité d’écoulement. En France, ils n’excèdent jamais la demande, et peuvent être très faibles, notamment par régime anticyclonique (peu de vent) d’hiver (PV insignifiant le jour, et nul pendant les longues nuits). L’hydraulique au fil de l’eau, minoritaire, s’y ajoute.
  • Le nucléaire, exempte de CO2, très compétitif et de coût marginal (celui du combustible) presque nul.
  • L’hydraulique éclusée ou de haute chute
  • Les énergies fossiles, en commençant par le gaz, puis le fioul, puis le charbon.

 Il s’en suit que la TC ne sera pas constante. Elle pourra être :
  • Nulle (cas fréquent hors Bretagne et PACA), notamment en l’absence de grands froids, ainsi que les jours fériés.
  • Marginalement très élevée si les moyens exempts de CO2 sont déjà saturés : grands froids, températures fraîches de nuit par temps calme.


5.2.6. Réduction de la TC par stockage de l’énergie électrique

Les variations de la demande ne correspondant en rien à l’intermittence de certaines productions, une solution pourrait être apportée par le stockage. Mais les moyens de stockage économiquement utilisables sont limités :

  • Les STEPs hydrauliques stockent l’énergie par électrique par « pompage » dans les limites de leurs capacités, peu extensibles.
  • Aucun autre moyen de stockage n’est actuellement viable : tous les procédés de stockage physiquement possibles ont des coûts de stockage trop élevés, et souvent rendement insuffisant (hydrogène).
  • A long terme, à la fois par l’évolution technique et l’acceptation de prix beaucoup plus élevés, on pourra :
    • peut-être stocker du jour vers nuit (batteries, hydrogène..?),
    • mais jamais de l’été vers hiver, 365 fois plus long ! 
  • Le stockage ne peut être envisagé que s’il est moins cher (en investissements et/ou en exploitation) qu’une production permanente décarbonée. Or le nucléaire répond parfaitement à cet impératif…


5.2.7. Réduction de la TC de recharge des VE

  • Recharger pendant les heures creuses, c’est-à-dire la nuit
    • Majoritairement nocturne à domicile,
    • En charge lente
    • Sous impératifs d’horaires, comme chauffe-eaux. 
  • Si la substitution des VE aux VT est forte ; les heures « creuses » cesseront de l’être et de nouveaux moyens seront requis.
  • La substitution totale, étudiée dans un message dédié, nécessite d’augmenter de 1/3, soit 200 TW, la capacité nationale de production. Or :
    • Les énergies fossiles restent à proscrire, faute de quoi le VE n’apporte aucune réduction des émissions de CO2.
    • L’hydraulique est peu extensible.
    • Le PV ne produit rien la nuit, très peu d’octobre à février,
    • L’éolien est intermittent, absent par régime anticyclonique,
  • La seule solution est l’abrogation de la loi sur la transition énergétique et la construction de 15 EPR et 1,9 GW. La logique voudrait que l’on commence par Plogoff, idéalement placé en Bretagne qui en est dépourvue, sur une côte rocheuse baignée de forts courants marins qui éviteront le recours à des réfrigérants atmosphériques.

A défaut, comme chez nos amis Germains, le VE émettra plus de CO2 que le VT. Ceci est quantifié ci-dessous.

5.3. Trace carbone de fabrication du VE

Il existe peu d’informations fiables à ce sujet. Quelques pistes de réflexion :
  • Hors batterie, en séries comparables, le VE ne devrait être  ni plus lourd, ni plus cher qu’un VT, et donc  de TC équivalente



  • Mais la batterie, sans doute prépondérante, ne saurait être négligée. La photo ci-dessus montre une batterie-plateforme d’Audi E-tron, 90 KWh et 900 kg.
  • Elle comporte énormément d’électronique, chaque élément ayant sa propre carte de contrôle.
  • Sa surface est celle de tout l’habitacle
  • Pour des raisons de sécurité en cas de choc latéral accidentel, elle est ceinturée par un profilé lourd en aluminium extrudé, section environ 15 x 10 cm, masse évaluée à 140 kg.
  • Sa TC reste inconnue, mais est évidemment élevée !
  • La littérature anti VE pose l’hypothèse qu’un VE a une trace carbone double d’un VT, soit 14,4 t en comparaison du VT moyen à 7,2 t, mais cette allégation n’est nullement démontrée.

5.3.1. Comparaisons en entrée de gamme
  • Le véhicule électrique de l’Alliance décliné en 2 modèles très proches, les Renault Zoé et Nissan Leaf est, selon elle, le véhicule électrique le plus vendu dans le monde. 
  • Comparons la Twingo à essence avec la Zoé électrique munie d’une batterie de 22 KWh.
    • Rapport des masses :                         1,66
    • Rapport des prix avant bonus:          2,13
    • La moyenne des deux rapports :       1,88
  • Faute de mieux, à partir de ce raisonnement très discutable, appliquant ce même ratio de 1,88 au VT typique (nettement plus grand et lourd qu’une Twingo), on aboutit à :
  • TC VE = TC VT x 1,88 = 7,2 x 1,88 = 13,5 tonnes
  • Cette hypothèse est raisonnable, mais ce n’est qu’une hypothèse !
5.4. TC totale d’un VE

La TC totale du VE, contrairement à celle du VT ne peut se ramener à deux chiffres (fabrication plus utilisation puits à roue), car le second de ces chiffres doit être examiné selon la filière de production électrique. C’est l’objet du message suivant.

vendredi 8 décembre 2017

13 – L’énergie dans l’Industrie



Chauffage process
(Colonne w du tableau de synthèse)

Des températures plus ou moins élevées, et des apports de chaleur sont nécessaires à de nombreux process de production industrielle pour lesquels l’origine de la chaleur ne s’impose pas. Citons :
  • Le ciment
  • Les céramiques
  • L’industrie chimique et pétrolière (distillation)
  • Les alliages métalliques
  • La plasturgie
  • L’agroalimentaire
  • La chimie
  • Le séchage
  • ...
Le choix de la source d’énergie est très varié. Pour certaine applications grosses consommatrices, mais très concurrentielles, telles les cimenteries, le charbon reste utilisé. On lui substitue parfois la combustion de pneumatiques déchiquetés dont le coût est nul voire légèrement négatif, tant leur élimination est problématique, d’où un dilemme entre l’avantage écologique d’éliminer les pneumatiques usagés, et l’inconvénient de l’émission de CO2 consécutive. Hormis ce cas, la plupart de ces industries pourraient utiliser le gaz ou l’électricité, cette dernière étant préférable si elle est largement ou totalement décarbonée.

Electricité process
(Colonne x du tableau de synthèse)

Certaines industries requièrent de l’électricité en tant que telle dans leur process de production. Citons :
  • L’électrolyse :CO2,
  • Production d’aluminium
  • Traitements de surface
  • Production d’hydrogène (potentiellement)
  • L’aciérie électrique
  • La soudure dans plusieurs variantes (TIG, MIG, UM, plasma, par points …)
  • ...
Elle n’est alors évidemment pas remplaçable.
Puissance mécanique
(Colonne y du tableau de synthèse)

La quasi-totalité des industries requièrent de l’électricité qui est transformée en énergie mécanique par des moteurs ou actionneurs électriques :
  • Ventilation
  • Refroidissement et cryogénie
  • Manutention, levage
  • Broyage, concassage, mélange
  • Machines-outils, machines-transfert, automates de production, robots
  • Production d’air comprimé
  • Centrifugeuses
Pour ces applications, l’électricité n’est pratiquement pas remplaçable, sinon par des moteurs thermiques aux émissions élevées et de moindre rendement, parfois utilisés en secours en cas de défaillance du réseau.

Hauts-Fourneaux et convertisseurs
(Colonne z du tableau de synthèse)

Rappelons que la fonte est obtenue par réduction du minerai de fer par le carbone suivant les réactions simplifiées :
2 C + O2 à 2 CO
2 Fe2 O3 + 3 CO à 4 Fe + 3 CO2
Le coke (carbone presque pur obtenu par distillation du charbon dans les fours à coke) est donc utilisé ici avant tout en qualité de réducteur chimique, et accessoirement seulement pour son apport de chaleur. Il est donc impossible de lui substituer une autre forme de chaleur : le carbone est partie intégrante de la réaction.

Les convertisseurs qui produisent l’acier à partir de la fonte procèdent également par oxydation du carbone résiduel contenu dans la fonte. Ils émettent donc aussi du CO2, inévitablement.

Rappelons aussi que « l’aciérie électrique » n’est pas un substitut de l’aciérie classique. Elle ne sert qu’à retransformer des ferrailles en lingots.

La sidérurgie fait donc partie des activités pour lesquelles le carbone n’est pas substituable : elle ne participera pas à la réduction des émissions de CO2 autrement que par amélioration de l’efficacité, ici dite « mise (Kg de coke) aux mille (kg de minerai de fer) », qui a été fortement réduite dans le passé, mais approche de sa limite théorique, ou par captation du CO2, dont la faisabilité économique reste à démontrer.


jeudi 20 avril 2017

ENE-farm : L’hydrogène, vecteur d’énergie




Dans son édition du 12 avril 2017, le quotidien « Les Echos » nous annonce par la plume de Yann Rousseau, leur correspondant à Tokyo, le démarrage difficile des « ENE-Farms » basées sur l’hydrogène comme source d’énergie à l’instar des préséries de véhicules à hydrogène
Voir l’article intégral de "Les Echos" en fin du message ci-dessous.



Selon ces informations :
  • L’énergie de base est le gaz de ville du réseau de Tokyo
  • Les ENE-farms en extraient l’hydrogène qui est utilisé immédiatement pour produire de l’électricité dans une pile à combustible (PAC)
  • Les pertes thermiques de la PAC contribuent au chauffage du logement.
  • Le Gouvernement nippon (Mr. Shinzo Abe) considère l’hydrogène comme l’énergie du futur capable d’éviter l’importation de combustibles fossiles et de réduire les émissions de CO2.
  • Le prix unitaire d’une ENE-farm est de 13 000 €.

Selon le site Panasonic :
  • la puissance électrique en continu d’une ENE-farm est de 700 watts.

 Une analyse technico-économique s’impose…
  • Cette architecture dans laquelle l’électricité est fournie par une PAC dont les pertes (environ 50% de l’énergie absorbée sous forme d’hydrogène) sont utilisées pour la chauffage, est un bel exemple de cogénération. On peut estimer la consommation d’énergie primaire à 700 / 50% = 1 400 watts.
  • Pour extraire de l’hydrogène du gaz de ville (gaz naturel, principalement constitué de méthane CH4), sans apport d’énergie extérieure, il faut recourir au vaporeformage auto-thermique (enthalpie nulle) du méthane selon la réaction :  3 CH4 + O2 + 4 H20 à 3 CO2 + 10 H2
  • L’hydrogène ainsi produit ne contient pas de carbone, mais a néanmoins une trace carbone élevée : tout le carbone du méthane est oxydé en CO2, exactement dans la même quantité que si on avait fait brûler le gaz à l’air libre. Aucun progrès à cet égard…
  • Le gaz de ville japonais est entièrement importé. Le Japon étant éloigné des sites d’extraction, et en l’attente d’un possible gazoduc le reliant à la Russie, tout le gaz naturel est importé à l’état liquide par des navires méthaniers. La liquéfaction à -162°C, nécessitée par le transport non pressurisé, en augmente significativement le coût, beaucoup plus que le transport proprement dit.
  • Le stockage sous pression de l’hydrogène gazeux, le plus léger de tous les gaz, est coûteux et limité. Ce stockage permettrait une production différée d’énergie électrique, mais ne semble pas envisagé ici. En effet, tant qu’à stocker l’énergie sous forme de gaz combustible, il vaudrait mieux stocker le méthane primaire que l’hydrogène, car il est 8 [car (CH4=16)/(H2=2) = 8 ] fois plus lourd bien que 2,8 fois moins énergétique en masse, donc finalement 3 fois moins coûteux à stocker . L’ENE-farm n’est donc en rien une manière de stocker l’énergie pour pallier l’intermittence des énergies renouvelables éolienne et photovoltaïque.
  • L’avantage de la cogénération est à comparer avec la solution concurrente : la production électrique par une centrale à gaz à cycle combiné, trop puissante pour pouvoir être domestique, mais qui atteint un rendement de 58%. Le gain, uniquement thermique, imputable à l’ENE-farm est donc de 100% - 58% = 42% de l’énergie latente du méthane utilisé évaluée à 1 400 watts, soit 590 watts.
  • L’investissement de 13 000 € à cet effet correspond à 22 K€/KW, à comparer avec celui du nucléaire post-Fukushima qui est de l’ordre de 4 G€/GW, ou encore 4 K€/KW. Il est donc 5,5 fois plus cher, avec une durée de vie très largement inférieure. Il est même environ 15 fois plus cher si l’on considère qu’un KWh électrique a 3 fois plus de valeur qu’un KWh thermique.
Le commentaire du Premier ministre japonais, qui a l’excuse de ne pas être un spécialiste, n’a aucun sens :
  • L’hydrogène n’est pas une source d’énergie, mais un simple vecteur, tout comme l’électricité. Il souffre par apport à elle, de médiocres rendements de conversion, et d’un stockage pondéreux, mais illimité dans le temps.
  • Il n’évite ni l’importation de combustible fossile, ni l’émission de CO2.
  • Le seul avantage significatif de l’ENE-farm est la dualité de l’approvisionnement énergétique : elle permet à l’abonné au gaz de produire son électricité en quantité suffisantes (700 W) pour s’éclairer par des LEDs et utiliser ses appareils numériques dans un logement moyen, à l’exclusion de tout chauffage (qui est fait au gaz) ou du gros électroménager. Mais cet avantage transitoire peut être obtenu par un petit groupe électrogène portable qui coûte… 50 fois moins cher !
Il n’y a donc rien de surprenant à ce que Panasonic et ses concurrents peinent à faire décoller ce produit en dépit d’énormes subventions de l’Etat japonais.

Tout ceci illustre parfaitement le bien-fondé de la position de Jean Tirole qui préconise de fixer un prix unique et universel du carbone et de laisser le marché, qui intègre ce prix, choisir les solutions les moins onéreuses, et donc les plus efficaces. Les actions dirigistes des états, toujours entachées de considérations politiques, voire démagogiques, ne sont jamais à l’optimum économique et écologique, et peuvent même s’avérer être à son antipode : voir notre message : «  Le contre-exemple allemand »







Texte intégrale de l’article de « Les Echos » du 12 avril 2017
Au Japon, 200.000 maisons sont branchées sur des piles à combustible

Le gouvernement nippon rêve d’une société fonctionnant à l’hydrogène mais n’arrive pas à faire décoller les ventes des «ENE-farms»

Yann Rousseau
@Yannsan — Correspondant à Tokyo


Si Toyota et Honda veulent croire que l’hydrogène pourrait remplacer l’essence dans les berlines du futur, des électriciens nippons et des géants de l’électronique estiment, eux, que les familles de l’Archipel pourraient bientôt massivement choisir d’alimenter leurs maisons et leurs appartements avec des piles à combustible. Dans les quartiers en pleine mutation, comme près d’Ikebukuro dans le nord de Tokyo, de plus en plus de hauts placards blancs marqués des mots « ENE-farm » font ainsi leur apparition au dos des maisons neuves. Reliés au réseau de Tokyo Gas, ces générateurs extraient l’hydrogène du gaz de ville et produisent lors d’une interaction avec de l’oxygène de l’électricité ainsi que de la chaleur pour le logement. Sur le papier, cette énergie est une aubaine pour le Japon. Le Premier ministre japonais, Shinzo Abe, aime ainsi décrire l’hydrogène comme « l’énergie du futur » pour l’Archipel, qui doit importer pour le moment, au prix fort, la totalité du charbon, du gaz et du pétrole qu’il consomme dans ses centrales électriques. Avec ces piles à combustible qui ne rejettent que de l’eau, le pays pourrait aussi réduire ses émissions de gaz à effet de serre. Cette technologie pourrait, enfin, lui permettre de garantir un minimum de production de courant lorsque des catastrophes naturelles endommagent le réseau électrique conventionnel. Le prix, barrière à l’entrée Pourtant, les ventes de cette technologie ne progressent que très lentement au Japon. L’an dernier, Panasonic, qui contrôle plus de 50 % du marché, n’a écoulé que 23.700 ENE-farms. En cumulé, cela représente 100.000 installations pour la marque depuis le lancement de cette solution en 2009, sur un marché total évalué à 200.000 unités. « Cela ne correspond qu’à 0,5 % de foyers équipés », note un analyste. « Nous anticipons une croissance un peu plus rapide avec le recul du prix des installations et l’offre de systèmes moins encombrants », assure Kyoko Ishii, une porte-parole de Panasonic. Les objectifs gouvernementaux sont encore lointains. Tokyo avait espéré 1,4 million de logements équipés en 2020 puis 5,3 millions en 2030. Les dernières projections n’anticipent qu’un demi-million d’unités en place dans trois ans. « Nous ne voyons pas le pays atteindre ses objectifs de déploiement », confirme Ali Izadi-Najafabadi, un analyste de Bloomberg New Energy Finance à Tokyo. Le prix reste une barrière à l’entrée élevée pour les familles. Une « ferme » coûte encore environ 1,6 million de yens (13.000 euros) dans le pays. « Le Japon étant le seul pays à promouvoir les ENE-farms, le rythme de réduction des coûts est lent », note l’expert. Profitant d’une intense compétition internationale, les installations couplant des panneaux solaires à des batteries lithium-ion pour les maisons de particuliers ont dans le même temps vu leurs prix s’effondrer au point de devenir meilleur marché que les technologies à l’hydrogène, que le gouvernement subventionne de moins en moins généreusement. Par ailleurs, la dérégulation en avril 2016 du marché de l’électricité au Japon a enfin permis aux géants du gaz de vendre directement de l’électricité aux particuliers. « De ce fait, ils ont moins de motivation à vendre des ENE-farms », note Ali Izadi-Najafabadi. Conscients de ces résistances, les acteurs japonais de la filière se lancent à la conquête des marchés étrangers. Panasonic a ainsi commencé la promotion, avec le groupe Viessmann, de systèmes à l’hydrogène en Allemagne. Dans les prochains mois, le leader japonais s’intéressera à la Grande-Bretagne, l’Autriche et la France.