Affichage des articles dont le libellé est Hydraulique. Afficher tous les articles
Affichage des articles dont le libellé est Hydraulique. Afficher tous les articles

lundi 28 janvier 2019

VE 5 Traces Carbone du VE


Le VE : Innovation pérenne ou rêve écologiste ?
« Dans un monde inondé d’informations sans pertinence, le pouvoir appartient à la clarté. »  Yuval Noah Harari


VE5. - Traces carbone du VE 
  • Ce chapitre porte sur la comparaison entre un VT et un VE avec le même profil de mission :
    • 14 000 km par an x 12 ans
    • Ville, suburbain, routes, autoroutes
    • Remplacement des VT par des VE.
5.1. TC d’utilisation du VE

Elle est évidemment nulle : ni le chargeur, ni la batterie, ni le moteur électrique n’émettent de CO2. Le VE en tire son image de « zéro émission » dont on oublie trop souvent l’adjectif essentiel « locale ».

5.2. TC « puits » à la roue du VE

  • Comme le dit avec juste raison Jean-Marc Jancovici, éminent expert en trace carbone : « L’électricité ne sort pas du mur ! ». Elle est produite à partir des énergies primaires :
    • Charbon
    • Pétrole,
    • Gaz
    • Nucléaire
    • Hydraulique
    • Eolien
    • PV,
    • Divers…
  • Sa trace carbone, très différente selon les filières, est donc aussi :
    • Très différente entre pays, selon les filières installées
    • Variable dans le temps, selon le mix de production utilisé.
TC de l’électricité selon les filières de production

5.2.1. TC du nucléaire et des renouvelables
  • Le process est exempt de CO2 direct, mais il ne faut pas oublier la TC d’amortissement, égale à la TC d’investissement divisée par la durée de vie effective, qui est elle-même égale à la durée de vie en années multipliée par le facteur de charge défini comme « énergie produite sur l’année / énergie produite à 100% de la puissance installée ».
  • La TC du nucléaire est très basse, grâce à une durée de vie supérieure à 40 ans et un facteur de marche de 75%.
  • La TC de l’hydraulique est très basse aussi, avec une durée de vie presque illimitée, et en dépit d’un facteur de charge variable, mais généralement choisi par l’opérateur
  • Les nouveaux renouvelables ont une TC plus élevée en raison de  :
    • Une durée de vie beaucoup plus faible, 10 à 15 ans
    • Un facteur de charge très bas : 15% (PV) à 20% (éolien)
    • Un investissement sur énergie produite plus élevé que le nucléaire.

                            Le graphe ci-dessous, 2011, pas à jour : TC du PV à diviser par 2 à 3 en raison de la baisse de ses prix.

5.2.2. TC des énergies fossiles :

La TC du process est prépondérante sur celle des investissements. Ces filières sont très différenciées entre elles, selon deux paramètres :magne²
  • Le taux de carbone dans l’énergie primaire (C >> CnH2n+2 > CH4)
  • Le rendement du cycle de production les centrales à gaz à cycle combiné allient le T1 (selon Carnot) très élevé des combustions internes et le T2 bas des cycles à vapeur.


5.2.3. TC selon le lieu : France - Allemagne

La TC de la recharge d’un VE varie donc selon les filières de production utilisées, très différentes selon les pays. Des exemples très contrastés sont la France et Allemagne. En résumé la TC de 1 MWh produit est :
  • En France : 74 Kg
  • En Allemagne : 700 Kg, soit presque 10 fois plus
  • Sans parler du coût pour l’abonné, presque double en Allemagne.


Ceci résulte principalement de la politique énergétique allemande qui est un déni de réalité : Un investissement monstrueux (350 G€) en éolien intermittent et peu prévisibles, et en photovoltaïque (PV) mal adapté aux latitudes septentrionales sous lesquelles sa production hivernale est insignifiante, et évidemment nulle la nuit en toutes saisons, n’a pu compenser la sortie du nucléaire décidée pour des raisons idéologiques, et a amené un énorme développement du charbon et du lignite de Saxe extrêmement émetteur de CO2 et de pollutions variées. Pour plus de détail voir message dans ce blog : Le contre-exemple allemand.

5.2.4. TC selon le lieu : Ensemble du monde


(Source : Dossier CO2 « Les Echos » 3/12/2018)

  • TC : Avec 660 kg de CO2/Mwh final, le mix mondial 2017 est à peine meilleur que le mix allemand (700 Kg), et n’a pas changé depuis 1990
  • Mais la production électrique a beaucoup augmenté avec évolution du mix :
  • Les nouveaux renouvelables en cours de décollage, de 1,5% à 8,5%, mais leur pondération reste faible.
  • L’hydraulique en régression relative de 17,5% à 16%
  • Le nucléaire est resté constant en volume, donc relativement décroissant de 16% à 10,3%.
  • Malheureusement, le gaz s’est substitué uniquement au pétrole, la somme gaz + pétrole restant constante à 26,5%
  • Et le charbon reste, hélas, en tête et constant en pourcentage, c’est à dire en forte progression en volume…
  • Au global, les réductions d’émissions dues aux nouveaux renouvelables et au gaz ont été annulées par le recours croissant aux énergies fossiles.

On est donc, dans l’ensemble, très loin d’un véhicule électrique « zéro émission ». L’adjectif « locale » restera durable, si l’on ose dire !

5.2.5.  TC selon le moment : France

Dans un territoire donné, la trace carbone n’est pas constante : la demande en énergie varie dans le temps dans un facteur de l’ordre de 3, et les moyens mobilisés successivement pour satisfaire la demande dépendent de nombreux critères :
  • Les nouveaux renouvelables intermittents sont mobilisés les premiers malgré leur prix contractuel élevé parce qu’ils bénéficient d’une priorité d’écoulement. En France, ils n’excèdent jamais la demande, et peuvent être très faibles, notamment par régime anticyclonique (peu de vent) d’hiver (PV insignifiant le jour, et nul pendant les longues nuits). L’hydraulique au fil de l’eau, minoritaire, s’y ajoute.
  • Le nucléaire, exempte de CO2, très compétitif et de coût marginal (celui du combustible) presque nul.
  • L’hydraulique éclusée ou de haute chute
  • Les énergies fossiles, en commençant par le gaz, puis le fioul, puis le charbon.

 Il s’en suit que la TC ne sera pas constante. Elle pourra être :
  • Nulle (cas fréquent hors Bretagne et PACA), notamment en l’absence de grands froids, ainsi que les jours fériés.
  • Marginalement très élevée si les moyens exempts de CO2 sont déjà saturés : grands froids, températures fraîches de nuit par temps calme.


5.2.6. Réduction de la TC par stockage de l’énergie électrique

Les variations de la demande ne correspondant en rien à l’intermittence de certaines productions, une solution pourrait être apportée par le stockage. Mais les moyens de stockage économiquement utilisables sont limités :

  • Les STEPs hydrauliques stockent l’énergie par électrique par « pompage » dans les limites de leurs capacités, peu extensibles.
  • Aucun autre moyen de stockage n’est actuellement viable : tous les procédés de stockage physiquement possibles ont des coûts de stockage trop élevés, et souvent rendement insuffisant (hydrogène).
  • A long terme, à la fois par l’évolution technique et l’acceptation de prix beaucoup plus élevés, on pourra :
    • peut-être stocker du jour vers nuit (batteries, hydrogène..?),
    • mais jamais de l’été vers hiver, 365 fois plus long ! 
  • Le stockage ne peut être envisagé que s’il est moins cher (en investissements et/ou en exploitation) qu’une production permanente décarbonée. Or le nucléaire répond parfaitement à cet impératif…


5.2.7. Réduction de la TC de recharge des VE

  • Recharger pendant les heures creuses, c’est-à-dire la nuit
    • Majoritairement nocturne à domicile,
    • En charge lente
    • Sous impératifs d’horaires, comme chauffe-eaux. 
  • Si la substitution des VE aux VT est forte ; les heures « creuses » cesseront de l’être et de nouveaux moyens seront requis.
  • La substitution totale, étudiée dans un message dédié, nécessite d’augmenter de 1/3, soit 200 TW, la capacité nationale de production. Or :
    • Les énergies fossiles restent à proscrire, faute de quoi le VE n’apporte aucune réduction des émissions de CO2.
    • L’hydraulique est peu extensible.
    • Le PV ne produit rien la nuit, très peu d’octobre à février,
    • L’éolien est intermittent, absent par régime anticyclonique,
  • La seule solution est l’abrogation de la loi sur la transition énergétique et la construction de 15 EPR et 1,9 GW. La logique voudrait que l’on commence par Plogoff, idéalement placé en Bretagne qui en est dépourvue, sur une côte rocheuse baignée de forts courants marins qui éviteront le recours à des réfrigérants atmosphériques.

A défaut, comme chez nos amis Germains, le VE émettra plus de CO2 que le VT. Ceci est quantifié ci-dessous.

5.3. Trace carbone de fabrication du VE

Il existe peu d’informations fiables à ce sujet. Quelques pistes de réflexion :
  • Hors batterie, en séries comparables, le VE ne devrait être  ni plus lourd, ni plus cher qu’un VT, et donc  de TC équivalente



  • Mais la batterie, sans doute prépondérante, ne saurait être négligée. La photo ci-dessus montre une batterie-plateforme d’Audi E-tron, 90 KWh et 900 kg.
  • Elle comporte énormément d’électronique, chaque élément ayant sa propre carte de contrôle.
  • Sa surface est celle de tout l’habitacle
  • Pour des raisons de sécurité en cas de choc latéral accidentel, elle est ceinturée par un profilé lourd en aluminium extrudé, section environ 15 x 10 cm, masse évaluée à 140 kg.
  • Sa TC reste inconnue, mais est évidemment élevée !
  • La littérature anti VE pose l’hypothèse qu’un VE a une trace carbone double d’un VT, soit 14,4 t en comparaison du VT moyen à 7,2 t, mais cette allégation n’est nullement démontrée.

5.3.1. Comparaisons en entrée de gamme
  • Le véhicule électrique de l’Alliance décliné en 2 modèles très proches, les Renault Zoé et Nissan Leaf est, selon elle, le véhicule électrique le plus vendu dans le monde. 
  • Comparons la Twingo à essence avec la Zoé électrique munie d’une batterie de 22 KWh.
    • Rapport des masses :                         1,66
    • Rapport des prix avant bonus:          2,13
    • La moyenne des deux rapports :       1,88
  • Faute de mieux, à partir de ce raisonnement très discutable, appliquant ce même ratio de 1,88 au VT typique (nettement plus grand et lourd qu’une Twingo), on aboutit à :
  • TC VE = TC VT x 1,88 = 7,2 x 1,88 = 13,5 tonnes
  • Cette hypothèse est raisonnable, mais ce n’est qu’une hypothèse !
5.4. TC totale d’un VE

La TC totale du VE, contrairement à celle du VT ne peut se ramener à deux chiffres (fabrication plus utilisation puits à roue), car le second de ces chiffres doit être examiné selon la filière de production électrique. C’est l’objet du message suivant.

vendredi 8 décembre 2017

1 - Tableau des énergies primaires

  • Le rayonnement solaire (lumière et chaleur) dû aux réactions de fusion nucléaire dans le soleil, qui débouche sur :
    • La photosynthèse qui extrait le carbone contenu dans le gaz carbonique (dioxyde) pour en faire de la cellulose et autres composants de la biomasse dont :
      • le bois de chauffage et,
      • après fermentation, sur de très longues durées, les combustibles fossiles : lignite, charbon, pétrole, gaz naturel.
    • L’évaporation de l’eau de mer, génératrice :
      • des précipitations, notamment sur les reliefs où elles engendrent l’énergie hydraulique,
      • des différences de pressions atmosphérique.
    • De l’électricité sur des panneaux photovoltaïques au silicium
  • La rotation de la terre (énergie cinétique) sur son axe qui :
    • transforme ces différences de pression atmosphérique en vent, d’où l’énergie éolienne, et, par interaction avec la surface de la mer, (théoriquement) houlomotrice.
    • entraîne une variation locale des force gravitationnelles du soleil et de la lune, provoquant les marées utilisées par des centrales marémotrices (niveaux) ou des hydroliennes (courants).
  •  Les réactions nucléaires :
    • Naturelles dans l’écorce terrestre, qui donnent la chaleur de la géothermie profonde
    • De fusion provoquée, dans les centrales électronucléaires, qui créent de la chaleur dans l’eau primaire, utilisée directement (EBR) ou après échangeur (EPR) dans une turbine à vapeur.
    • De fission provoquée, à l’étude dans « Iter », dont on espère tirer également de la chaleur à un horizon lointain et indéterminé, et dans la fusion de l’hélium 3 importé de la lune !


Notons que toutes les énergies primaires sont issues de réactions nucléaires actuelles ou anciennes, y compris celles de la formation du système solaire et de ses planètes.

Ces énergies primaires peuvent :
  •  Soit être utilisées directement ou après une transformation minime :
    • Bois de chauffage, transformé ou non en granulés
    • Pétrole après raffinage (distillation permettant de séparer GPL, essence, gazole, fioul lourd, paraffine et divers composants aromatiques et/ou indésirables)
    • Gaz naturel après traitements divers, dont désulfuration et odorisation.
    • Autrefois, les moulins à eau (hydraulique), de même que les moulins à vent (éolien), actionnaient directement la meule du meunier ou les premières machines.
  • Soit être converties dans une autre forme d’énergie, principalement en électricité :
    • La chaleur résultant de la combustion des énergies renouvelables ou fossiles aussi bien que de la fission nucléaire, est convertie par un moteur thermique ou une turbine à vapeur ou à gaz, en énergie mécanique, elle-même immédiatement convertie en électricité par un alternateur.
    • Les énergies mécaniques hydraulique et éolienne sont systématiquement converties en électricité.
    • La lumière du soleil est convertie en électricité par des panneaux photovoltaïques (PPV).
Analyse et comparaison des énergies primaires

Nous associons chacun des tableaux ci-dessous à un message dédié qui analyse les avantages et inconvénients de chacune des énergies primaires (lignes 1 à 27) selon six critères essentiels (colonnes a à f du tableau de synthèse) :
  • a. Coût
  • b. Facilité de transport
  • c. Possibilité de stockage
  • d. Durabilité, caractère renouvelable
  • e. Emissions de CO2 résultant de leur utilisation
  • f. Disponibilité par rapport aux variations de la demande
Le titre de chaque tableau est un lien vers l'analyse détaillée.


Energies mécaniques renouvelables, non directement utilisables
Hydraulique d’eau douce
Fil de l’eau
1
Eclusées
2
Haute chute
3
STEPs
4
Hydraulique maritime
Marémotrice
5
Hydrolienne
6
Houlomotrice
7
Eolien
Terrestre
8
Maritime
9

   
    Barrage de Bort-Les-Orgues (Corrèze)

    Champ d'éoliennes

Energie solaire renouvelable, non directement utilisable
Panneaux photovoltaïq.
Diffus sur toit
10
Fermes PPV
11

     Ferme solaire de Cestas (Gironde)
                                   
Energies thermiques non renouvelables,
directement utilisables
Fossile solide
Charbon
12
Lignite
13
Fossile liquide
Fiouls lourds
14
Gazole, Fioul
15
Cogénération
16
Essence
17
GPL
18
Fossile gaz
Gaz naturel
19
Fission nucléaire
20

     Puits de pétrole

Thermique renouvelable, directement utilisable
Solaire
Naturel
21
Capteurs therm.
22
Biomasse et bio- carburants
Biomasse brute
23
Granulés
24
Bioéthanol
25
Biodiesel
26
Géothermie profonde
27

      Chauffe-eau solaire


5 - Energies primaires mécaniques renouvelables dédiées à l’électricité


Lignes 1 à 11 du tableau de synthèse

Hydraulique d’eau douce (lignes 1 à 4)

L’énergie potentielle résulte des précipitations sur les reliefs de l’eau (pluie, neige, grêle) qui descend des montagnes à la mer. Autrefois appelée « houille blanche », cette énergie primaire comporte différentes variantes :
  • Centrales au fil de l’eau, (ligne 1), dont les production sont assez bien prévisibles selon le précipitations dans leur bassin versant, mais néanmoins fatale (non modulables).
  • Centrales dites « éclusées », (ligne 2), de faible chute, à production continue plus ou moins modulables.
  • Centrales de haute chute avec lac supérieur (ligne 3), parfaitement disponibles à tout instant et pour une durée limitée de la capacité du lac supérieur. Leur production à la demande est parfaitement adaptée à la production des pointes modérées.
  • Centrales de haute chute réversibles (STEPs) (ligne 4), avec chacune un lac supérieur et un lac inférieur, disponibles à tout instant, permettant le stockage de l’énergie électrique par pompage du lac inférieur vers le lac supérieur dans la limite de leurs capacités, mais inaptes à une production continue. Elles permettent de satisfaire à la demande des pintes extrêmes, lorsque les autres moyens sont saturés. 

Cette énergie est particulièrement intéressante :
  • Très économique en montagne, avec un coût marginal presque nul une fois l’installation amortie, ce qui est le cas de la plupart d’entre elles.
  • Capacité de rétention d’énergie potentielle dans le lac amont (ligne 3)
  • Disponibilité instantanée dans la limite de la capacité du lac amont (lignes 3 et 4), et capacité de stockage (ligne 4).
  • Indéfiniment renouvelable, avec une durée de vie presque illimitée
  • Aucune émission de CO2 en exploitation
  • Elle produit, bon an mal an, 10 à 12 % de l’électricité nationale

Toutefois :
  • Les barrages, qui noient des vallées et remplacent ainsi un écosystème par un autre, sont loin d’être parfaitement écologiques... Leur construction s’accompagne d’une importante émission de CO2 (ciment, acier, engins…).
  • Dépendantes des précipitations, les centrales hydrauliques sont fatales si leur capacité de stockage amont et/ou leur chute sont faibles. Dans un barrage au fil de l’eau, la production est faible à l’étiage, faute de débit, et pendant les crues, faute de dénivellation. Pour toutes, la production dépend des précipitations.
  • La plupart des sites favorables en France étant déjà équipée, la capacité d’extension de cette énergie primaire est faible, malgré la vogue de la micro-hydraulique de capacité très limitée. Notamment, les précieuses STEPs ne sont nullement une solution définitive au stockage des énergies intermittentes vertes, faute de sites favorables.
  • Le lieu de production ne peut pas être choisi, alors que le transport de l’énergie électrique vers le lieu de consommation a ses limites : quelques centaines de kilomètres, sauf à recourir aux coûteuses lignes DCHT (courant continu à très haute tension)
  • Le risque associé est faible, mais pas nul : plusieurs écroulements de barrages hydroélectriques ont eu lieu. En France, la ruine du barrage de Malpasset a fait 423 mort à Fréjus en 1959, mais cet ouvrage ne produisait pas d’électricité. En Italie, un glissement de terrain dans le lac amont a entraîné le débordement, sans destruction, du barrage hydroélectrique de Vajont, qui a fait 1 900 morts en 1963. Des catastrophes majeures ont eu lieu, notamment en Chine.

Hydraulique maritime (lignes 5 à 7)
  •  L’unique centrale marémotrice de la Rance (ligne 5) recourt à 24 turbines réversibles résistant à l’eau de mer, dont les coûts de fabrication et de maintenance sont élevés. Les célèbres 14 mètres de marnage ne sont qu’un extrême, et ne constituent en rien une dénivellation moyenne, laquelle serait plutôt de l’ordre de 3 mètres, ce qui est déjà beaucoup en mer. La production, parfaitement prévisibles comme les marées, n’en est pas moins intermittente, avec deux arrêts par marée, et d’importantes variations au cours du mois lunaire et de l’année solaire qui déterminent l’amplitude des marées. Sa production moyenne de 57 MW, soit 24% de sa puissance installée (240 MW), soit encore un cumul de 500 GWh par an, représente 1% de la production électro-hydraulique française. Elle n’a jamais atteint son équilibre économique. Elle n’est transposable que dans les rares régions du monde ayant un marnage semi-diurne élevé, et nulle part ailleurs en France.
    Usine marémotrice de la Rance à St Malo
  • Plusieurs prototypes d’hydroliennes (ligne 6), grandes turbines immergées dans des zones à fort courant de marée, ont été testés. Il n’en reste plus qu’une en service. Elles restent fatales quoique parfaitement prévisibles, et sont très coûteuses pour une raison simple : un courant de 4 nœuds, soit 2 m/s, fort et rare, donne la même pression dynamique qu’une chute de 0,20 mètre, trop basse pour être économiquement exploitable. Il est donc peu probable que ces projets soient suivis. Là encore, les zones d’installation, qui doivent allier fort courant et profondeur suffisante, sont peu nombreuses : En France, principalement le Fromveur au sud d’Ouessant, et le Raz Blanchard au nord de la pointe de la Hague.
    Hydrolienne (image de synthèse)
  • L’énergie houlomotrice (ligne 7), énergie des vagues citée pour mémoire, n’est pas réellement envisageable : la houle est une énergie primaire extrêmement intermittente, aléatoire, complexe et très peu prévisible. Elle se manifeste avec des longueurs d’onde, des hauteurs et des fréquences très variables qui compliquent singulièrement son exploitation, sans parler des problèmes liés aux tempêtes et à la maintenance (« fouling », c'est à dire pousse des algues et coquillages indésirables).


Cette filière repose sur l’exploitation de vent, par nature très variable et peu prévisible. Sa problématique principale est le « facteur de charge », défini comme le rapport entre la puissance moyenne produite sur l’année et la puissance nominale (maximum) de l’éolienne. Ce facteur dépend évidemment des années qui comportent plus ou moins de vents adaptés, mais aussi de la conception : la puissance maximum de l’alternateur sera atteinte plus souvent si l’hélice est de plus grand diamètre, mais l’éolienne sera aussi plus chère. Pratiquement les facteurs de charges constatés ou prévus en France sont de l’ordre de :
  • 18% en éolien terrestre (8)   
  • 25% en éolien maritime (9)   
L’avantage de 7 points, soit 40%, pour ce dernier ne compense pas les surcoûts liés à la construction et à la maintenance en mer, qui sont proches d’un doublement.

                                          Prototype terrestre d'éolienne maritime "Halidade" 
                                          avec alternateur direct, à Saint-Nazaire

L’installation d’éoliennes terrestres ne peut se faire que dans des régions ventées (côtes, plaines ou reliefs accessibles pour la maintenance) non urbaines car l’acceptabilité par les riverains s’est fortement réduite. Les éoliennes maritimes posées sur le fond requièrent des profondeurs modérées, mais néanmoins éloignées des côtes pour les rendre acceptables, bien qu'également contestées par les pêcheurs, les plaisanciers et les riverains du littoral. Des éoliennes maritimes flottantes sont envisagées avec des coûts encore plus élevés ; il n’y a plus de limite sur la profondeur, mais la distance à la côte allongera les lignes de raccordement au réseau et les mouvements du flotteur et du mât compliqueront la maintenance. Comment aborder par mauvais temps sur un engin flottant en haute mer, dont le mât oscille de plusieurs mètres ? Même l'hélicoptère, menacé par l'immense rotor, apparaît incertain !

L’énergie éolienne, totalement renouvelable, n’existerait pas sans le tarif garanti cumulé avec la priorité d’écoulement, car ce tarif reste environ 3 fois supérieur au prix de marché de gros, (5 fois pour le maritime) ajouté au caractère fatal d’une filière qui produit quand elle peut, et non quand on en a besoin, une énergie électrique économiquement impossible à stocker.

Tableau des énergies primaires mécaniques dédiées à la production électrique: