jeudi 15 février 2018

Optimisation des PPV fixes : pente et tarification



Résumé

Les fermes photovoltaïques produisent un peu moins de la moitié de l’énergie électrique solaire en France, soit 1% de la production électrique totale. Elles sont subventionnées à travers des contrats à durée déterminée qui leur assurent la priorité d’écoulement et un prix fixe garanti, et leur permettent donc de vendre à un prix déconnecté du marché, insensible à la concurrence. Les exploitants cherchent donc à optimiser la production annuelle, et donc la production estivale prépondérante (jours longs et soleil haut) grâce à des PPV presque horizontaux, même au détriment de la production hivernale.

En dehors des STEPs, de capacité limitées, le stockage de l’énergie électrique n’est pas économiquement possible sur une demi-journée, du jour à la nuit, et est définitivement impossible sur une demi-année, 365 fois plus longue, entre l’été et l’hiver !

La vraie valeur de l’énergie solaire actuelle est donc très faible, parce qu’elle est contracyclique : elle produit quand on n’en n’a guère besoin, et se substitue alors au nucléaire sans réduction des émissions de CO2 dont le nucléaire est tout aussi exempt. Elle n’a pas d’intérêt économique, puisque le coût marginal de l’énergie nucléaire ainsi économisée est très inférieur à leur prix contractuel garanti.

Il est donc essentiel de réduire le caractère contracyclique des PPV en augmentant leur production hivernale, même au détriment de l’été et de la moyenne annuelle, ce qui peut se faire très simplement, avec des PPV plus inclinés vers le sud.

Pour y inciter l'exploitant des futures fermes, il faut l’amener à vendre au prix de marché de gros en remplaçant les avantages actuels par un abondement défini en pourcentage fixe de ses ventes, autour de 80%. Ainsi, les concepteurs et les exploitants de fermes PV seront contraints de s’intéresser au prix de marché et d’optimiser leur production en hiver, dans l’intérêt commun des acteurs de l’énergie.

Les projets seraient ainsi attribués au moins-disant en taux d’abondement, et non plus en prix garanti du MWh. Le coût de l’abondement serait financé de la même manière que le prix garanti qu'il remplace, à savoir par le CSPE (Contribution au Service Public de l’Electricité) payée par l’abonné. Le taux d’abondement donnerait en plus une mesure objective de la compétitivité, laquelle ne sera atteinte que quand le taux sera nul.

Mais cette analyse démontre aussi que les PPV, même à prix réduits, ne peuvent constituer une solution partielle pertinente sous nos latitudes que si le stockage devient économiquement viable, ce qui n’est nullement le cas à un horizon prévisible.

Surinvestissement : Quand bien même le stockage sur une demi-journée deviendrait possible, le facteur de charge en hiver des PPV de pente optimisée, est de 8% en moyenne, mais descend vers 5% les jours de forte nébulosité. Pourvoir à une consommation d’hiver pendant un tel jour calendaire, à partir de la brève production PV diurne, nécessiterait une puissance installée multipliée par 20 (= 1/5%), et même par 25 en tenant compte du rendement de stockage. Ceci n’étant pas envisageable, le caractère contracyclique des PPV n’est donc pas compensable par le stockage, même gratuit, et condamne cette filière à un rôle marginal diurne.

Par surcroît, le stockage sur une demi-journée est loin d’être gratuit. Nous montrons ci-dessous qu’il aboutirait à environ 60 €/MWh selon des hypothèses très optimistes de stockage par batteries, et beaucoup plus via l’hydrogène. Ce coût vient s’ajouter au coût de production, au mieux 80 €/MWh, pour aboutir, en intégrant un rendement de stockage de 75%, à 167 €/MWh, bien loin de la compétitivité… La meilleure décision serait donc de cesser de subventionner cette source d’énergie de réseau en France, ce qui entraînerait l’arrêt immédiat des investissements.

Il en va très différemment dans les pays tropicaux, non seulement parce que les PPV y produisent largement plus et parce que l’alternance jour / nuit est pratiquement constante, mais surtout parce que les pointes de consommation dues à la climatisation sont en journée et en été, en phase avec la production. Les problèmes de contrecycle et de surinvestissement sont là-bas éliminés.

Analyse

Problématique des panneaux solaires photovoltaïques (PPV)

Dans le but louable, mais d’efficacité discutable, d’aider au développement des énergies renouvelables, l’Etat accorde aux exploitants de fermes photovoltaïques deux avantages qui font l’objet d’un contrat à durée déterminée, en général 20 ans :
  • La garantie d’écoulement prioritaire
  • Le prix garanti sur la durée du contrat
Le prix de vente de l’énergie électrique ainsi produite est donc totalement déconnecté du prix de marché de gros, dont la moyenne est de l’ordre de 40 €/MWh, mais qui varie entre des extrêmes allant d’une valeur légèrement négative, à des valeurs ayant déjà atteint 1 000 €/MWh, et, de façon usuelle, entre 30 et 100 €/MWh. Ces variations résultent de la loi de l’offre et de la demande :
  • Si la demande globale est faible et vient à être inférieure à la production des énergies fatales bénéficiant de l’écoulement prioritaire, l’opérateur de réseau, qui opère sur des marchés concurrentiels en amont et en aval, n’a pas d’autre choix que de baisser ses prix de vente pour écouler les excédents à d’autres opérateurs étrangers.
  • Si au contraire la demande est très élevée, l’opérateur doit acheter aux sources d’énergie les plus coûteuses, producteurs nationaux ou opérateurs étrangers.
En aval, la majorité des abonnés particuliers ont des prix fixes ou très peu différenciés (jour/nuit), avec l’exception du tarif EDF Tempo fortement différencié (facteur 9,9 réduit à 7,0 en 2016) selon la consommation globale prévue, mais peu répandu et peu promu. Les abonnés industriels peuvent avoir des contrats à prix variables, voire des contrats d’effacement qui autorisent l’opérateur de réseau à couper leur approvisionnement avec un préavis court. Mais cette action sur la demande est insuffisante pour réduire suffisamment les pointes de consommation qui surviennent en hiver, en début ou fin de nuit, par grand froid.

Il est donc essentiel de disposer de moyens de production :
  • même chers, pouvant être mobilisés rapidement pendant les pointes de consommation : thermique fossile, hydraulique de haute chute y compris les STEPs, thermique au biogaz renouvelable…
  • ou, à tout le moins, pouvant assurer une production continue sur laquelle on puisse compter pendant les pointes : nucléaire, hydraulique au fil de l’eau.

Or les nouvelles énergies vertes ne répondent nullement à ces critères :
  • L’énergie éolienne, liée au vent, est aléatoire : un régime anticyclonique d’hiver peut faire coïncider vents faibles ou nuls et grand froid.
  • Plus grave, l’énergie photovoltaïque est contracyclique sur l’année : elle produit autour de la mi-journée beaucoup en été, mais peu en hiver, et rien la nuit, notamment au cours de longues nuits d’hiver (18 heures sur 24) où se situent les pointes de consommation.
  • Le déni de cette évidence a amené l’Allemagne à dépenser 350 G€ dans les énergies vertes au détriment du nucléaire, avec pour résultat un prix de l’énergie électrique presque double de la France et DIX FOIS plus émetteur de CO2 ! Elle semble discrètement remettre en cause cette politique depuis 2016.
La forte baisse du prix de revient des PPV (Panneaux Photo Voltaïques) permet de réduire le prix garanti assurant la rentabilité des fermes solaires : les fermes récentes bénéficient de 105 €/MWh, mais les nouveaux projets sont basés sur 80 €/MWh, niveau parfois dépassé par le prix de marché de gros, ce que certains ont présenté comme l’accès à la compétitivité. Ceci est inexact, car faudrait pour cela que le marché de gros atteigne ou dépasse durablement ces 80 €/MWh au moment où les PPV produisent, c’est-à-dire en journée et surtout en été, ce qui n’est pratiquement jamais le cas ! Les PPV demeurent donc très loin de la compétitivité, non pas parce que leur prix moyen est beaucoup trop élevé, mais bien parce qu’elles ne produisent pas au bon moment

Atténuer le caractère contracyclique des PPV ?

Cesser l’installation de fermes solaires sous nos latitudes, est une décision politiquement difficile tant l’opinion, mal informée par les médias, leur est favorable. Mais il est au minimum indispensable de réduire leur caractère contracyclique annuel caractérisé par une production hivernale insignifiante : sous nos latitudes, la production quotidienne moyenne au voisinage du solstice d’hiver est 9 à 10 fois inférieure à celle du solstice d’été ! Nous montrons ci-dessous que cette réduction est possible, très simplement, et sans coût supplémentaire…

La production d’un PPV déterminé ne dépend que de son éclairement par le soleil, lequel varie selon quatre paramètres :
  1. Le site (angle du soleil au-dessus de l’horizon) à midi, qui varie entre :
    • un maximum égal à : latitude plus 23° au solstice d’été,
    • un minimum égal à : latitude moins 23° au solstice d’hiver. En France la latitude varie entre 42° N (Banuyls) et 51° N (Calais). 
  2. L’azimut (angle du soleil par rapport aux points cardinaux), qui dépend de l’heure. En attribuant ici la valeur 0 au plein sud (contrairement à l’usage qui lui attribue 180°), il varie quotidiennement sous nos latitudes d’environ -60° à +60° degrés au solstice d’hiver (nuits longues), ou d’environ -120° à +120° au solstice d’été (jours longs). Dans les régions subtropicales, au contraire, cet angle varie quotidiennement en toutes saisons d’environ -90° à + 90° (jour pratiquement égal à la nuit).
  3. La pente du PPV supposé fixe, vers le sud, entre l’horizontale et la verticale
  4. La nébulosité : couverture nuageuse, brume, brouillard, précipitations
Notons tout de suite que :
  • Paramètres 1 et 2 : Ils sont imposés en un lieu déterminé dont l’ensoleillement « astronomique » (hors nébulosité), est totalement prévisible dans le temps sans limite de durée. Ils justifient pleinement l’implantation de PPV dans les pays de latitude inférieure à 30° N (environ San Francisco, New York, Porto, Naples, Bakou, Pékin), mais sont très dissuasifs au-delà de 45° N (environ Seattle, Montréal, Bordeaux, Grenoble, Bucarest,  Crimée, Vladivostok, nord du Japon), régions dans lesquelles les nuits très longues en hiver ne sont pas compensées en journée par un soleil trop bas.
  • Paramètre 3 : L’angle des PPV avec la verticale, 3ème paramètre, est libre pour le concepteur d’un ferme solaire, mais imposé par la pente du toit déjà bâti pour le presque totalité des producteurs diffus. Ce qui suit ne les concerne donc pas les PPV diffus sur toitures.
  • Paramètre 4 : La nébulosité vient corriger les prévisions « astronomiques » de production, en faible baisse dans les régions arides, et en forte baisse dans les régions pluvieuses. Dans l’ensemble, la nébulosité vient handicaper la production solaire des régions déjà défavorisées du nord : c’est bien connu, il y a plus de nuages en Irlande (53° N) qu’au Maroc (33° N), et aussi plus en hiver qu’en été en France (42°N à 51°N).
  • L’observation des PPV existants est surprenante :

Dans les fermes solaires, reliées au réseau électrique, les PPV sont proches de l’horizontale, comme ci-dessous à Cestas, au sud de Bordeaux, la plus grande ferme française :


Au contraire, sur les dispositifs autonomes non reliés au réseau, qui ont pour seule source d’alimentation la production de leur PPV, ceux-ci sont   très inclinés vers le sud, proches de la verticale, comme ci-dessous :

 


Cette différence s’explique très simplement :

Le PPV d’un dispositif autonome doit assurer chaque jour :
  • la production nécessaire à son fonctionnement,
  • plus la charge de la batterie qui sera utilisée pour le fonctionnement au cours de la nuit qui est jusqu’à deux fois plus longue que le jour.
Il doit donc être dimensionné et orienté pour assurer ces deux besoins même dans les pires conditions, c’est-à-dire autour du solstice d’hiver avec nébulosité élevée. Avec juste raison il est donc très incliné vers le sud, face à un soleil, voilé ou non, bas sur l’horizon.

L’exploitant de ferme solaire vend sa production, dont l’écoulement est prioritaire, et donc insensible à la concurrence, à un prix forfaitaire contractuel déconnecté du prix de marché. Ce dernier augmente fortement quand la consommation croît : en hiver, de nuit et par temps froid. Selon son contrat qui n’encourage pas à la continuité, l’exploitant a donc intérêt à optimiser sa production annuelle totale sans se préoccuper, ni du besoin, ni du prix de marché. Il le fait en optimisant la production prépondérante, celle de mai à août, au détriment (faible pour lui) de novembre à février. Le soleil étant haut dans la première période, il dispose ses PPV proches de l’horizontale, ce qui a en outre les avantages suivants :
  • Moindre surface au sol, car les PPV ne se masquent pas les uns les autres.
  • Structure moins haute et plus simple
Il ne va pas jusqu’à l’horizontale qui aurait des inconvénients de maintenance : une légère pente est nécessaire à l’auto-nettoyage : la pluie ruisselle en entraînant la majeure partie des poussières déposées sur les PPV.

On objectera que les éoliennes bénéficient du même type de contrat. Elles produisent de façon aléatoire, quand il y a du vent, mais celui-ci est peu corrélé avec la consommation : les éoliennes ne sont pas contracycliques. En outre, quand le vent est là, l’intérêt de l’exploitant est de produire le maximum, sans que ce soit au détriment d’autres circonstances. Une éolienne pourrait être spécialisée dans les vents forts ou dans les vents faibles, mais il n’existe guère de corrélation entre la force du vent et le besoin national en électricité. Leur contrat, quoique trop généreux par rapport à leur production, n’a pas d’effet pervers direct.

Rappelons aussi qu’en dehors des STEPs limitées en capacité et aux seules régions montagneuses, il n’existe, ni actuellement, ni à un horizon prévisible, de moyen économiquement viable pour stocker l’énergie de réseau, qu’elle soit solaire, éolienne ou autre. Notamment :
  • Les batteries ont un rapport coût / durée de vie trop élevé, outre leur caractère fort peu écologique
  • L’hydrogène vert (électrolytique) amène un rendement désastreux : 70% pour l’électrolyse, 90% pour la compression/détente, 50% pour la pile à combustible, soit 31% en tout, avec des coûts d’investissement très élevés et à durée de vie limitée.
De toutes manières, un stockage à prix très élevé est techniquement possible sur une demi-journée entre le jour et la nuit, mais absolument exclu sur une demi-année entre le solstice d’été et celui d’hiver, car il serait… 365 fois plus coûteux !

Analyse de la production des PPV fixes

Nous avons vu que les exploitants de fermes solaires disposent d’un paramètre pour optimiser leur production selon la saison : l’inclinaison des PPV par rapport à l’horizontale. Un panneau très incliné optimise l’hiver tout en pénalisant l’été, avec une réduction de la production totale annuelle, mais avec une meilleure adéquation à la demande globale d’énergie.

La modélisation, effectuée par nos soins et détaillée en annexe, est établie pour une latitude de 45°N, ne qui est à peu près la latitude moyenne des fermes solaires qui sont pour la plupart dans le sud du pays, heureusement ! Cette modélisation ne prétend pas optimiser définitivement les paramètres des fermes solaires qu’il appartient aux exploitants de choisir dans la grande variété de latitudes, de climats, d’altitudes, de pentes naturelles, de prix du terrain, etc., mais seulement de prouver qu’il existe une large possibilité d’optimisation, actuellement utilisée à contre-sens, et qu’il ait aisé de modifier.

Notre analyse part d’une modélisation des courbes diurnes de production (en ordonnées) selon l’heure (en abscisses) et le mois (en paramètre) pour toutes les pentes comprises entre -20° et +70° par pas de 10°. Pour chaque pas de 10, deux résultats sont établis :

La production selon le « modèle astronomique » qui serait atteinte en l’absence de nébulosité, et avec des rayons solaires traversant l’atmosphère (équivalente à 7,8 km d’air à la pression atmosphérique) sous un angle de 45°, soit un trajet constant de 7,8 km / cos(45°) = 7,8 x 1,414 = 11,0 km (C’est la définition de la puissance de crête d’un PPV perpendiculaire aux rayons, selon la direction du soleil par rapport à la verticale, selon croquis ci-dessous).



La production selon « modèle réel » qui prend en compte :
  • une nébulosité moyenne différenciée par saison,
  • La longueur réelle de la trajectoire des rayons dans l’atmosphère, notamment aux lever et coucher du soleil.
Examinons le résultat pour deux pentes bien caractéristiques parmi les 10 calculées :  
  • PPV fixe horizontal (0°)
  • PPV fixe incliné vers le sud (60°). 
PPV à 0° (horizontal)


Les courbes calculées ci-dessous selon le modèle réel, diffèrent des courbes ci-dessus selon le modèle astronomique à plusieurs égards correspondant à des phénomènes physiques très concrets :
  • Le maximum astronomique est inférieur à 100% parce que le PPV n’est jamais perpendiculaire au soleil.  L’écart minimum est de 45° (latitude) – 23° (écliptique) = 22°, et cos(22°) = 93%. Le maximum réel est inférieur en raison de la nébulosité faible mais significative de juin à juillet.
  • Les courbes du modèle réel de novembre à février sont très inférieures aux courbes astronomiques en raison de la forte nébulosité et d’un trajet optique dans l’atmosphère rallongé pendant ces quatre mois (soleil plus bas sur l’horizon, même à midi).
  • Aux lever et coucher du soleil, passage d’une coupure franche dans le modèle astronomique (le soleil disparaît brusquement derrière l’horizon), à une tangente (en plus, la trajectoire des rayons solaires dans l’atmosphère tend vers l’infini au soleil couchant et fait tendre l’éclairement solaire vers zéro). Le modèle réel traduit la réduction de production due à l’atmosphère en début et fin de journée.
  • Mais les durées des jours ne sont pas modifiées entre les deux modèles.



A titre de comparaison, la courbe historique de production solaire sans nébulosité au voisinage du solstice d’été avec grand beau temps le 17 juin 2017, est tirée du site du Réseau de Transport d’Electricité www.eco2mixrte.fr (attention au décalage de 2 heures des abscisses, entre les heures solaires du modèle, et les heures légales de RTE). La correspondance est excellente avec la courbe rouge du modèle réel, sauf le maximum, situé à 5 422 MW en crête rapporté à une puissance installée de l’ordre de 7 000 MW, soit 78%, logiquement supérieur à notre modèle (73%) puisque sans nébulosité ce jour-là, mais pas strictement comparable en raison de la variété des PPV en France, dont la majorité est diffuse en toiture, donc non horizontale.



PPV incliné de 60° vers le sud

 

Les courbes ci-dessous du modèle réel, diffèrent à nouveau des courbes ci-dessus du modèle astronomique :
  • Le maximum astronomique est obtenu en novembre-février et atteint 100% parce que le site du PPV (45° de latitude moins 60° de pente = -15°, très proche du soleil à -23° de décembre à janvier, voire égal en novembre et février. Le maximum de juin à juillet est bas, de l’ordre de 80%, parce que le PPV est trop incliné pour être perpendiculaire au soleil à midi. Le maximum du modèle réel est inférieur en raison de la nébulosité qui reste significative de mai à août.
  • Au contraire, le maximum du modèle réel est pratiquement maintenu (61 à 63%) pendant les six mois d’avril à septembre, car relativement peu réduit par leur relativement faible nébulosité, mais de novembre à février, l’écart entre les deux modèles est important en raison de la forte nébulosité.
  • Pour autant, dans le modèle réel, la production de novembre à février (aire sous le courbe bleue) atteint la moitié de la valeur de mai à août, alors /que pour un panneau horizontal, elle est inférieure à son sixième : la production est beaucoup moins contracyclique.
  • Dans tous les cas, la production n’existe qu’à une double condition : le soleil soit être situé au-dessus du plan horizontal ET au-dessus du plan du PPV. Sur le modèle astronomique, en novembre-février, le coucher du soleil survient alors que le PPV est encore correctement orienté, d’où les importantes variations presque instantanées. Celles-ci sont estompées dans le modèle réel par la prise en compte de la forte absorption atmosphérique en début et fin de journée.
  • Dans les deux modèles, l’azimut du soleil ne peut être exploité par un PPV proche de la verticale que sur une durée n’excédant pas 180°, soit 12 heures, les heures antérieures et postérieures étant perdues en mai-août.
  • Les durées des jours ne sont pas modifiées entre les deux modèles.




Les courbes en trait continu, basées sur le modèle réel, donnent la production (facteur de charge exprimé en pourcent) par saison  quand la pente du PPV varie de -20° à +70°. On constate, sans surprise, les optimums suivants :

  • 25% de mai à août avec une pente de 15%
  • 16% en moyenne annuelle (courbe noire), avec une pente de 35%
  • 9% de novembre à février avec une pente de 65%
Le facteur de charge annuel réel pour un PPV en pente de 10° ressort à 14,5%, conforme aux moyennes nationales réelles, mais ces dernières résultent d’une très grande variété de PPV diffus de pentes variables, et des PPV peu inclinés des fermes solaires, et sont donc difficiles à interpréter.

Les courbes en trait mixte donnent, à titre indicatif, la production « astronomique » en l’absence de nébulosité, et avec une épaisseur atmosphérique supposée constante (croquis plus haut). La différence est spectaculaire, particulièrement de novembre à février, où la nébulosité et l’augmentation de l’absorption atmosphérique divisent la production par un facteur de plus de 3.


Sur ce graphe, on constate qu’il est possible, en passant d’une pente de 5° à une pente de 65°, de maintenir la production annuelle (facteur de charge 14%), tout en doublant la production de novembre à février (facteur de charge passant de 4,5% à 9%). Mais si on veut réduire le masquage des panneaux inclinés par les panneaux situés devant, il faut augmenter la distance entre panneaux, c’est-à-dire augmenter la surface du terrain et donc le coût de la ferme PV.

Une variante est de rechercher des terrains en pente vers le midi, ce qui réduit le masquage, et aussi la surface du terrain (puisqu’en arpentage, celle-ci est toujours rapportée à sa projection horizontale), mais au prix de conditions d’installation et d’exploitation plus difficiles).

Dans tous les cas, les exploitants ne le feront pas sans incitation économique…


Optimisation en valeur

La valeur réelle de l’énergie électrique produite est celle du prix de marché de gros au moment de la production. Il est plus élevé quand il fait froid et à certaines heures. Nous nous sommes basés sur une hypothèse selon laquelle la moyenne quotidienne diurne du prix de marché varie entre un minimum en juin et juillet et un maximum en décembre et janvier, dans un rapport 2,37, par exemple de 30 à 71 €/MWh, la valeur absolue étant sans effet puisqu’il s’agit d’une comparaison entre périodes. Le prix de gros nocturne est sans intérêt, puisqu’il valoriserait une production PV nulle. La loi de variation dans la période est exponentielle, avec plus de temps en dessous de la moyenne (47 €) qu’au-dessus. Elle aboutit à des valeurs plausibles, qu’il y aurait lieu d’affiner par comparaison avec à des moyennes sur plusieurs années dont nous ne disposons pas. Mais nous verrons ci-dessous que les résultats sont suffisamment différenciés pour ne pas être remis en cause par une petite incertitude sur les hypothèses de prix.

Le graphe ci-dessous comporte des ordonnées en pourcents choisis tels que, pour des PPV horizontaux (0°), la courbe de production en valeur annuelle soit à 13%, comme le facteur de charge qui donne la production en volume dans les mêmes conditions, afin de faciliter les comparaisons.



Dans l’intérêt commun des acteurs de la production PV, producteurs, opérateurs de réseaux et utilisateurs, il est évidemment souhaitable d’optimiser la production en valeur, et non en volume. Le graphe ci-dessous montre de façon évidente que :

  • l’optimum en valeur annuelle se situe vers une pente de 45° à 50°, que les fermes solaires devraient utiliser en lieu et place des pentes actuelles  faibles (0° à 30°), 
  • l’optimum en valeur de novembre à février se situe vers une pente de 70°, celle que l’on observe sur les équipements non raccordés au réseau et recourant donc au stockage.
Le stockage sur une demi-année n’étant en aucun cas envisageable, et dans l’hypothèse où un stockage sur une demi-journée deviendrait économiquement possible, l’énergie PV ne pourra être développée qu’en augmentant fortement sa production de novembre à février, même au détriment des autres périodes pour lesquelles le stockage est relativement moins critique. Pour l’obtenir, il est indispensable d’inciter les exploitants à modifier leurs installations futures, et, si possible, actuelles.

Au moins modifier les contrats des fermes solaires…

Une telle modification est juridiquement aisée, et de coût nul, pour les appels d’offres des fermes solaires futures. Elle pourrait être négociée pour les contrats déjà signés, dans des conditions évidemment beaucoup moins favorables, car il va de soi que la signature publique acquise doit être respectée, même si sa pertinence est contestable.

Pour ce faire, il suffit, très simplement, de remplacer les contrats actuels (priorité d’écoulement et prix fixe garanti) par de nouveaux contrats :

  • supprimant la priorité d’écoulement, ce qui oblige l’exploitant à vendre au prix du marché de gros,
  • mais apportant un abondement exprimé en % du chiffre réalisé au prix de gros d’affaires (et non du volume produit).
L’abondement oblige l’exploitant à chercher à vendre le plus possible à un prix rémunérateur, c’est-à-dire à produire en périodes hivernales de forte consommation. Il cessera d’optimiser l’été ou l’année, mais, à défaut de pouvoir produire la nuit, optimisera l’hiver, et sa production viendra alors en déduction des productions fossiles, et réduira ainsi les émissions de CO2. Sans aucun doute, il augmentera l’inclinaison des PPV autour des 50° à 60° du graphique ci-dessus. On peut aussi penser que cette meilleure valorisation de l’énergie PV quand elle est rare pourrait rentabiliser les PPV mobiles selon un ou deux axes, selon un principe parfaitement connu :
  • Rotation quotidienne en azimut selon une parallèle à l’axe de rotation terrestre
  • Rotation annuelle en site selon un axe horizontal est - ouest

Les appels d’offres publics pour de nouvelles ferme solaires ne seraient donc plus basés sur le prix fixe garanti du MWh, mais sur le taux d’abondement garanti :  Celui qui offre le taux d’abondement le plus bas remporte le marché. En remplacement d’un prix garanti de 80 €/MWh, on peut prévoir que l’on parviendrait à un taux d’abondement de l’ordre de 80%, c’est-à-dire un revenu de l’exploitant variant le plus souvent entre :
  • 54 €/MWh pour un prix de marché de gros à 30 €/MWh
  • 126 €/MWh, pour un prix de marché de gros à 70 €/MWh.
Le marché confirmera ou modifiera, peut-être à la baisse, cette estimation.



Ceci aura en outre l’avantage de chiffer la compétitivité réelle de la filière : on a trop vu les médias annoncer que l’énergie solaire est compétitive au motif que son prix de revient moyen se situe parfois en dessous du prix de marché, alors qu’en l’absence de stockage, seule la compétitivité instantanée a un sens. Le taux d’abondement chiffre exactement le défaut de compétitivité réelle : on pourra parler de compétitivité quand aucun abondement ne sera nécessaire. On pourra aussi comparer ce taux d’abondement selon la latitude, et mettre en relief que les PPV au nord de la France ne sont pas économiquement viables.

Pas plus que le prix garanti actuel, l‘abondement ne sera une charge pour les finances publiques. Comme le prix garanti, il sera financé par la CSPE (Contribution au Service Public de l’Electricité) à la charge des abonnés, avec vocation à disparaître :

  • soit parce ce que le PPV est devenu réellement compétitif, ce qui sera peut-être possible à long terme dans les régions méridionales,
  • soit parce qu’on aura abandonné cette source contracyclique, notamment dans les régions septentrionales.

Mais de préférence arrêter ces investissements !

Plaçons-nous dans l’hypothèse optimiste d’un stockage économiquement possible sur une demi-journée, maintenons qu’un stockage sur une demi-année, 365 fois plus cher, ne sera jamais possible, et examinons la situation au cœur de l’hiver.

  • Nous avons vu qu’avec des panneaux de pente optimisée, vers 60°, le facteur de charge en décembre et janvier n’est en moyenne que de 8% sur 24 heures malgré un maximum à 35% autour de midi, en raison d’une production effective faible et très brève.
  • Dans les conditions les plus critiques, par jour de forte nébulosité, le facteur de charge pourrait se situer un tiers plus bas que la moyenne ci-dessus, aux alentours de 5% sur 24 heures.
  • Par grand froid, la consommation nationale sur une heure peut dépasser 90 GW, elle a même déjà atteint 103 GW. Une consommation moyenne de 75 GW sur 24 heures, soit 75 x 24 = 1 800 GWh est très plausible.
  • Pour les produire avec un facteur de charge de 5%, il faut une puissance installée de : 1800 GWh / 24 h / 5% = 1 500 GW avant rendement de stockage.
  • Mais les deux tiers, soit environ 1 200 GWh de cette énergie passeront par un stockage. S’il s’agit de batteries de rendement 80% se composant avec le rendement du réseau pour un rendement global de 75%, (hypothèse très optimiste par rapport à l’hydrogène) il faut produire 1 200 GWh/75% + 600 GWh = 2 200 GWh en 24 heures.
  • Pour les produire cette énergie ainsi réévaluée, il faut une puissance installée de : 2200 GWh / 24 h / 5% = 1 833 GW pour assure la continuité en hiver.
  • Rappelons les ordres de grandeur en énergie PV : 1 MW installé = 1 hectare = 1 M€. La puissance installée de 1 833 GW signifie :
  • environ 18 fois la puissance actuelle en France, qui est de l’ordre de 100 GW, toutes filières confondues !
  • Une surface de 1 833 000 hectares, soit 18 330 km², deux fois la Corse !
  • Un investissement de 1 833 G€, soit 367 tranches de centrales nucléaires de 1 GW comptées à 5 G€ chacune !
  • Un tel investissement en moyens de production utilisés quelques semaines par an, est évidemment trop coûteux et impossible à amortir. Le caractère contracyclique des PPV n’est pas compensable par le stockage, et limite cette filière à un rôle marginal.
Le stockage au coucher du soleil doit atteindre 1 200 GWh soit l’équivalent théorique de 5,4 millions de batteries de véhicules électriques de 22 KWh (Renault Zoé), en fait plutôt 10 millions de batteries si on limite le cyclage à 54% de la capacité nominale afin de préserver la durée de vie, déjà limitée à environ 2000 cycles. Le stockage nécessiterait donc un investissement de 10 millions de batteries à 6 K€ l’une, soit 60 G€… à renouveler tous les 6 ans (20 000 jours). Le seul stockage nocturne coûterait donc 60 G€ / 10 ans = 10 G€/an, et porterait sur 50% de la consommation annuelle en durée, environ 40% de la consommation annuelle en volume, soit 430 TWh/an x 40% = 172 000 MWh/an. Le MWh utilisé la nuit verrait son coût augmenter de 10 G€ / 172 000 = 60 € du seul fait du stockage, avant pris en compte du rendement de stockage et du coût de production.

Si on oublie délibérément l’impossible amortissement d’un parc ayant coûté 1 833 G€ et que l’on prend en compte le futur prix supposé du MWh PV, soit 80 €, on arriverait à un coût du MWH restitué le nuit de :
80 € (product.) / 75% (rdt. de stockage) + 60 € = 167 €/MWh.
Malgré des hypothèses très optimistes, en on est très loin de la compétitivité, même en énergie marginale !

Annexes

Modélisation de la production des fermes photovoltaïques

La modélisation de la production, exprimée en pourcentage de la puissance installée, est faite en trois étapes :

  • Modélisation astronomique, qui donne la production sans nébulosité, avec une absorption atmosphérique constante.
  • Prise en compte de l’absorption atmosphérique et de la nébulosité par la modèle dit « réel », qui vient corriger la précédente d’un facteur correctif toujours inférieur à 100%
  • Modélisation du prix de marché de gros de l’énergie au cours de l’année
Modélisation astronomique

Les mouvements relatifs de la terre et du soleil sont rapportés à un trièdre Oxyz orthonormé défini comme suit :

  • L’axe Oz est l’axe de rotation de la terre
  • Le plan Oxy est le plan équatorial terrestre
  • Le plan Oxz est déterminé par le soleil et l’axe de rotation terrestre
Repère orthonormé

Il s’en suit :

  • Qu’un point fixe P de la terre tourne autour de l’axe Oz avec une période de 24 heures.
  • Que le soleil « monte et descend » dans le plan Oxz selon un angle dont les maximums en valeur absolue sont l’angle de l’écliptique (ecl = 23°) atteints aux solstices d’été et d’hiver selon une période de 1 an.
La modélisation est faite par calcul de l’ensoleillement par pas de ¼ d’heure, soit 96 pas par jour, pendant un semestre, d’un solstice au suivant, comportant 6 jours, soit 12 jours par an, ou encore 1 jour par mois. On aboutit à 96 x 6 = 576 pas par semestre, gérable sur Excel. Au cours de ce semestre de 6 jours, le site du soleil passe de son maximum de +23° à son minimum de -23°.

Le plan horizontal en un lieu P de longitude zéro et de latitude lat à l’heure hr par rapport à ce trièdre, est représenté dans le trièdre ci-dessus par son vecteur directeur (perpendiculaire au plan) unitaire OP dont les composantes sont :
xOP = sin(lat). cos {π [(hr/12)+1)]}
yOP = sin(lat).  sin {π [(hr/12)+1)]}
zOP = cos(lat)
On vérifie bien que xOP2 + yOP2 + zOP2 = 1

La direction du soleil est donnée par le vecteur unitaire OS dont les coordonnées sont :
xOS = cos {ecl . sin [π( hr/144 +1/2)]}
yOSs = 0
zOS = sin {ecl . sin [π( hr/144 +1/2)]}
144 est le produit de 24 hr/jr x 6 jours 
On vérifie à nouveau que xOS2 +y OS2 + zOS2 = 1

L’éclairement d’une surface horizontale au point P à l’heure hr est donnée, en pourcentage de la puissance installée, par le produit scalaire OS.OP, c’est-à-dire le cosinus de l’angle α des deux vecteurs unitaire. Il représente, après mise à zéro des produits négatifs correspondant à la nuit, l’éclairement de la surface horizontale en l’absence d’atmosphère.

Le taux réel de transmission de lumière solaire selon la longueur du trajet atmosphérique, par rapport au taux théorique utilisé dans la définition de la puissance de crête d’un PPV, est modélisé par la formule :
Taux = exp {-ta [1/ABS(cos α)-racine(2)]}

  • Si α= 45°, alors cos α = racine(2) / 2 = 1 / racine(2), la valeur entre crochets est nulle, et le taux est de 100% de la norme.
  • Si α= 90°, alors cos α = 0,   1/cos(α) = ∞, le taux est nul : c’est le lever ou coucher du soleil
  • Dans les autres cas, le taux de transmission est une exponentielle décroissante en fonction de la longueur du trajet atmosphérique, en facteur de la constante ta (taux atmosphérique) ajustée à 20% en concordance avec la littérature scientifique.


L’éclairement d’un PPV incliné d’un angle pt vers le sud par rapport à l’horizontale est déterminé à partir du vecteur directeur OQ du PPV, qui résulte de OP par rotation de l’angle pt (pente)nvers le sud. Ses composantes sont :
xOQ =cos(lat-pt) . cos[PI() . (hr/12 +1)]
yOQ= sin(lat-pt) . sin[PI() . (hr/12 +1)]
zOQ =sin(lat-pt)
On vérifie à nouveau que xOQ2 +yOQ2 + zOQ2 = 1

L’éclairement d’un PPV de pente pt au point P à l’heure hr est donnée, en pourcentage de la puissance installée, par le produit scalaire OS.OQ, c’est-à-dire le cosinus de l’angle des deux vecteurs unitaire. Il représente, après mise à zéro des produits négatifs correspondant à l’éclairage au dos du PPV, l’éclairement de la surface du PPV en l’absence d’atmosphère...

Jusqu’à ce stade, la modélisation est très robuste en ce qu’elle n’utilise que des données astronomiques ou physiques parfaitement connues obéissant à des lois très précises. Les facteurs correctifs qui suivent sont plausibles et cohérents, mais ne présentent pas la même précision, peuvent varier selon la région, la période, la météo, ou le marché. Leur modélisation, même approximative, permet quand même de mettre en évidence des facteurs d’efficacité qui sont trop substantiels pour être contestables.

La nébulosité est prise en compte par un facteur de transmission moyen qui dépend de la saison : il y a évidemment plus de nuages et hiver qu’en été. Elle est habituellement chiffrée en octas, soit un huitième de l’angle solide total de la voute celeste, mais cette unité est peu pertinente, car elle ne corresponds pas à des taux de réduction de l’éclairage solaire.

La carte d’ensoleillent ci-dessous donne une idée de l’importance de la nébulosité :

  • Dans l’ensemble de la France non-méditerranéenne, les courbes iso-ensoleillement suivent les parallèles terrestres, avec une variation de 1 100 KWh/m² par 50° N, à 1 400 KWh/m² par 43° N, soit une augmentation de 27%, qui résulte à peu près pour moitiés (13%) de la latitude et de la moindre nébulosité. 
  • La comparaison à latitude constante de 44° entre l’ouest du pays de climat atlantique, et l’est, de climat méditerranéen, montre une augmentation de 1 400 à 1 600 KWh/m², soit 15%, qui est due exclusivement due à la moindre nébulosité qui n’est pourtant pas nulle. 
  • Entre le nord et PACA, le facteur nébulosité intervient pour environ 13% + 15%  = 30%, et ceci ne prend pas en compte la saison, puisque ces chiffres sont des moyennes annuelles dans lesquelles l’été, de moindre nébulosité, est prépondérant.

Nous avons pris pour hypothèse logique que le taux de transmission résultant de la nébulosité est :

  • Maximum, évalué à 75% d’un ciel clair au solstice d’été
  • Minimum, évalué à 45% d’un ciel clair au solstice d’hiver
  • Moyen aux équinoxes, évalué à 60% d’un ciel clair.
Comme il n’y a manifestement pas d’évolution rapide de la nébulosité au voisinage des solstices, nous avons adopté une interpolation sinusoïdale à raison d’une demi-période entre deux solstices opposés consécutifs. La formule d’interpolation est :
Taux =[(TxMin + TxMax) + (TxMax - TxMin)]. cos (π . h/144)/2

Cette modélisation plausible (à 45 °N de latitude) corrobore assez bien les données publiées par Wikipedia (moyenne France) selon le graphe ci-dessous. L’écart est principalement une avance de phase de l’ordre d’un demi mois de de la nébulosité par rapport à la symétrie annuelle, en large partie expliqué par le fait que les solstices sont en avance de 10 jours sur les fins de mois. Notre modèle, basé sur la symétrie des deux semestres entre solstices, ne peut le prendre en compte, mais ceci a peu d’importance dans la mesure où les écarts de mois symétriques, par exemple   avril et septembre, sont inclus dans les mêmes périodes d’analyse.

Production en valeur

  • La valorisation de l’énergie produite au prix de marché de gros est incontestable. Les fluctuations de ce dernier résultent des variations de l’offre et de la demande, qui dépendent elles-mêmes de facteurs variés :
  • L’offre dépend des sources utilisées qui peuvent être prioritaires et aléatoires (vertes), permanentes (nucléaire…), disponibles sur demande à bas prix (hydraulique de haute chute) ou à prix élevé (thermique fossile, importation)
  • La demande varie selon de nombreux paramètres : température extérieure, jour ou nuit, jour ouvrable ou non, activités liées à l’heure (cuisine, numérique…) et tarification (la pointe quotidienne de 23 heures résulte exclusivement du passage au tarif « heures creuses »).
  • Par nature, l’énergie PV sera consommée de jour, et ne contribuera jamais aux pointes annuelles extrêmes, toujours nocturnes, au cours desquelles le prix de gros peut atteindre son niveau extrême. Elle connaîtra en revanche les prix les plus bas, quand la production aléatoire prioritaire se rapproche de la demande, mais leur pondération est faible car cette occurrence est pratiquement limitée à certains dimanches matin d’été. Nous avons donc évalué une fourchette de prix pas trop ouverte, entre 30 et 70 €/MWh.
L’interpolation linéaire présenterait un biais de principe, car il est clair que les pointes de consommation sont plus brèves que les étiages. Nous avons opté pour un modèle exponentiel peu marqué, dans lequel le prix moyen est atteint au bout de 62% du temps, au lieu de 50% dans un modèle linéaire.

En faisant appel aux bases de données de RTE il serait possible d’améliorer et de confirmer ce modèle qui reste conservatif et plausible tel qu’il est.

vendredi 8 décembre 2017

1 - Tableau des énergies primaires

  • Le rayonnement solaire (lumière et chaleur) dû aux réactions de fusion nucléaire dans le soleil, qui débouche sur :
    • La photosynthèse qui extrait le carbone contenu dans le gaz carbonique (dioxyde) pour en faire de la cellulose et autres composants de la biomasse dont :
      • le bois de chauffage et,
      • après fermentation, sur de très longues durées, les combustibles fossiles : lignite, charbon, pétrole, gaz naturel.
    • L’évaporation de l’eau de mer, génératrice :
      • des précipitations, notamment sur les reliefs où elles engendrent l’énergie hydraulique,
      • des différences de pressions atmosphérique.
    • De l’électricité sur des panneaux photovoltaïques au silicium
  • La rotation de la terre (énergie cinétique) sur son axe qui :
    • transforme ces différences de pression atmosphérique en vent, d’où l’énergie éolienne, et, par interaction avec la surface de la mer, (théoriquement) houlomotrice.
    • entraîne une variation locale des force gravitationnelles du soleil et de la lune, provoquant les marées utilisées par des centrales marémotrices (niveaux) ou des hydroliennes (courants).
  •  Les réactions nucléaires :
    • Naturelles dans l’écorce terrestre, qui donnent la chaleur de la géothermie profonde
    • De fusion provoquée, dans les centrales électronucléaires, qui créent de la chaleur dans l’eau primaire, utilisée directement (EBR) ou après échangeur (EPR) dans une turbine à vapeur.
    • De fission provoquée, à l’étude dans « Iter », dont on espère tirer également de la chaleur à un horizon lointain et indéterminé, et dans la fusion de l’hélium 3 importé de la lune !


Notons que toutes les énergies primaires sont issues de réactions nucléaires actuelles ou anciennes, y compris celles de la formation du système solaire et de ses planètes.

Ces énergies primaires peuvent :
  •  Soit être utilisées directement ou après une transformation minime :
    • Bois de chauffage, transformé ou non en granulés
    • Pétrole après raffinage (distillation permettant de séparer GPL, essence, gazole, fioul lourd, paraffine et divers composants aromatiques et/ou indésirables)
    • Gaz naturel après traitements divers, dont désulfuration et odorisation.
    • Autrefois, les moulins à eau (hydraulique), de même que les moulins à vent (éolien), actionnaient directement la meule du meunier ou les premières machines.
  • Soit être converties dans une autre forme d’énergie, principalement en électricité :
    • La chaleur résultant de la combustion des énergies renouvelables ou fossiles aussi bien que de la fission nucléaire, est convertie par un moteur thermique ou une turbine à vapeur ou à gaz, en énergie mécanique, elle-même immédiatement convertie en électricité par un alternateur.
    • Les énergies mécaniques hydraulique et éolienne sont systématiquement converties en électricité.
    • La lumière du soleil est convertie en électricité par des panneaux photovoltaïques (PPV).
Analyse et comparaison des énergies primaires

Nous associons chacun des tableaux ci-dessous à un message dédié qui analyse les avantages et inconvénients de chacune des énergies primaires (lignes 1 à 27) selon six critères essentiels (colonnes a à f du tableau de synthèse) :
  • a. Coût
  • b. Facilité de transport
  • c. Possibilité de stockage
  • d. Durabilité, caractère renouvelable
  • e. Emissions de CO2 résultant de leur utilisation
  • f. Disponibilité par rapport aux variations de la demande
Le titre de chaque tableau est un lien vers l'analyse détaillée.


Energies mécaniques renouvelables, non directement utilisables
Hydraulique d’eau douce
Fil de l’eau
1
Eclusées
2
Haute chute
3
STEPs
4
Hydraulique maritime
Marémotrice
5
Hydrolienne
6
Houlomotrice
7
Eolien
Terrestre
8
Maritime
9

   
    Barrage de Bort-Les-Orgues (Corrèze)

    Champ d'éoliennes

Energie solaire renouvelable, non directement utilisable
Panneaux photovoltaïq.
Diffus sur toit
10
Fermes PPV
11

     Ferme solaire de Cestas (Gironde)
                                   
Energies thermiques non renouvelables,
directement utilisables
Fossile solide
Charbon
12
Lignite
13
Fossile liquide
Fiouls lourds
14
Gazole, Fioul
15
Cogénération
16
Essence
17
GPL
18
Fossile gaz
Gaz naturel
19
Fission nucléaire
20

     Puits de pétrole

Thermique renouvelable, directement utilisable
Solaire
Naturel
21
Capteurs therm.
22
Biomasse et bio- carburants
Biomasse brute
23
Granulés
24
Bioéthanol
25
Biodiesel
26
Géothermie profonde
27

      Chauffe-eau solaire