Affichage des articles dont le libellé est nucléaire. Afficher tous les articles
Affichage des articles dont le libellé est nucléaire. Afficher tous les articles

mercredi 18 septembre 2019

Nucléaire et sécheresse


Les médias nous montrent que la sécheresse de l’été 2019 aggrave l’étiage de nombreux fleuves, notamment la Loire et le Rhône. Or l’utilisation de leur eau pour le refroidissement des centrales nucléaires amène son réchauffement, lequel doit être limité avec juste raison. Ainsi, plusieurs réacteurs ont dû être arrêtés ou utilisés à puissance réduite. Selon plusieurs présentateurs, peut-être influencés par des associations antinucléaires, la sécheresse ferait découvrir un nouvel inconvénient des centrales nucléaires…

Quelle méconnaissance !

La transformation de la chaleur en énergie mécanique ne peut s’effectuer que selon le deuxième principe de la thermodynamique, dit principe de Carnot, selon lequel :
  • Le fluide thermodynamique (vapeur d’eau le plus souvent) est porté à la température T1 (°K) aussi élevée que possible par la chaleur reçue de la source chaude (fission nucléaire ou combustion de charbon, de pétrole, de gaz ou autre…)
  • La détente du fluide thermodynamique produit l’énergie mécanique recherchée, et refroidit ce fluide jusqu’à la température T2(°K) aussi basse que possible, ce qui nécessite le refroidissement du condenseur où la vapeur se transforme en liquide.
  • Les quantités de chaleur (énergie thermique) émise par la source chaude, et reçue par la source froide, sont respectivement proportionnelles aux températures T1 et T2. L’énergie mécanique obtenue est la différence, proportionnelle à T1 - T2 .

De validité universelle, ce principe s’applique à toutes les centrales électrothermiques : fission nucléaire, charbon, fioul, gaz, biogaz, solaire thermique. Seules y échappent l’hydraulique et l’éolien, parce qu’elles ne partent pas de la chaleur, mais d’une énergie mécanique primaire exploitable, et le solaire à PPV qui produit directement de l’électricité à partir de la lumière.

Le rapport entre l’énergie thermique à évacuer par la source froide et l’énergie fournie dépend de T1 plus que de T2. Plus T1 est élevé, meilleur sera le rendement en énergie mécanique.  Par ordre décroissant :
  • Centrales à gaz à cycles combinés : le premier cycle est une turbine à gaz, le second une turbine à vapeur, le tout avec un rendement exceptionnel nettement supérieur à 50%.
  • Centrales thermiques conventionnelles à vapeur, utilisant toute énergie thermique fossile ou non, avec des rendements de 35 à 45%.
  • Centrales nucléaires à eau bouillante (EBR), car T1 est limitée par les matériaux utilisés dans le cœur. Il n’en n’existe aucune en France, mais elles constituent plus de la moitié du parc mondial.
  • Centrales nucléaires à eau pressurisée (EPR) pour la même raison, plus la présence d’un échangeur, appelé « générateur de vapeur » qui réduit T1 de quelques degrés : c’est le prix de la sécurité apportée par le confinement de l’eau primaire contaminée, avec un rendement conventionnel de 33%.

 Les EPR, dont le fonctionnement est strictement exempt de CO2, nécessitent un peu plus d’eau de refroidissement qu’une centrale à énergie fossile, mais les ordres de grandeur sont proches. Cet inconvénient mineur disparaît au bord de la mer dont la capacité de refroidissement est pratiquement illimitée, ce qui évite le recours à des réfrigérants atmosphériques.


Ces réfrigérants atmosphériques, nullement réservés aux centrales nucléaires, sont des cascades dans lesquelles l’eau tiédie par le refroidissement de T2, se refroidit en s’évaporant partiellement avant d’être renvoyée dans le fleuve, pendant que l’air remonte dans le paraboloïde en se chargeant de vapeur d’eau qui condense à sa sortie en en nuage blanc, exclusivement constitué de gouttelettes d’eau du fleuve.

Avoir fait de ces réfrigérants très visibles le symbole du nucléaire est une double absurdité :
  • Les centrales conventionnelles en utilisent aussi
  • Le nuage qui s’en échappe ne peut pas être contaminé, car résultant d’une eau qui n’est jamais rentrée dans l’enceinte nucléaire.


Conclusion :  Si les militants antinucléaires étaient mieux informés :
  • Ils raconteraient moins de bêtises,
  • mais ils cesseraient d’être antinucléaires
  • et notre climat y gagnerait beaucoup !


Pour mémoire : Les fluides impliqués dans les centrales électrothermiques :

 Type de centrale
Nucléaire EPR
(eau pressurisée)
Nucléaire EBR
(eau bouillante)
Thermique conventionnelle
Transfert thermique
Eau primaire liquide contaminée
Eau liquide ou gaz contaminée utilisée dans la turbine
Néant
Fluide thermodynamique
Eau secondaire liquide ou gaz
Eau liquide ou gaz
Refroidissement
Fleuve ou mer
Fleuve ou mer
Fleuve ou  mer





lundi 28 janvier 2019

VE 5 Traces Carbone du VE


Le VE : Innovation pérenne ou rêve écologiste ?
« Dans un monde inondé d’informations sans pertinence, le pouvoir appartient à la clarté. »  Yuval Noah Harari


VE5. - Traces carbone du VE 
  • Ce chapitre porte sur la comparaison entre un VT et un VE avec le même profil de mission :
    • 14 000 km par an x 12 ans
    • Ville, suburbain, routes, autoroutes
    • Remplacement des VT par des VE.
5.1. TC d’utilisation du VE

Elle est évidemment nulle : ni le chargeur, ni la batterie, ni le moteur électrique n’émettent de CO2. Le VE en tire son image de « zéro émission » dont on oublie trop souvent l’adjectif essentiel « locale ».

5.2. TC « puits » à la roue du VE

  • Comme le dit avec juste raison Jean-Marc Jancovici, éminent expert en trace carbone : « L’électricité ne sort pas du mur ! ». Elle est produite à partir des énergies primaires :
    • Charbon
    • Pétrole,
    • Gaz
    • Nucléaire
    • Hydraulique
    • Eolien
    • PV,
    • Divers…
  • Sa trace carbone, très différente selon les filières, est donc aussi :
    • Très différente entre pays, selon les filières installées
    • Variable dans le temps, selon le mix de production utilisé.
TC de l’électricité selon les filières de production

5.2.1. TC du nucléaire et des renouvelables
  • Le process est exempt de CO2 direct, mais il ne faut pas oublier la TC d’amortissement, égale à la TC d’investissement divisée par la durée de vie effective, qui est elle-même égale à la durée de vie en années multipliée par le facteur de charge défini comme « énergie produite sur l’année / énergie produite à 100% de la puissance installée ».
  • La TC du nucléaire est très basse, grâce à une durée de vie supérieure à 40 ans et un facteur de marche de 75%.
  • La TC de l’hydraulique est très basse aussi, avec une durée de vie presque illimitée, et en dépit d’un facteur de charge variable, mais généralement choisi par l’opérateur
  • Les nouveaux renouvelables ont une TC plus élevée en raison de  :
    • Une durée de vie beaucoup plus faible, 10 à 15 ans
    • Un facteur de charge très bas : 15% (PV) à 20% (éolien)
    • Un investissement sur énergie produite plus élevé que le nucléaire.

                            Le graphe ci-dessous, 2011, pas à jour : TC du PV à diviser par 2 à 3 en raison de la baisse de ses prix.

5.2.2. TC des énergies fossiles :

La TC du process est prépondérante sur celle des investissements. Ces filières sont très différenciées entre elles, selon deux paramètres :magne²
  • Le taux de carbone dans l’énergie primaire (C >> CnH2n+2 > CH4)
  • Le rendement du cycle de production les centrales à gaz à cycle combiné allient le T1 (selon Carnot) très élevé des combustions internes et le T2 bas des cycles à vapeur.


5.2.3. TC selon le lieu : France - Allemagne

La TC de la recharge d’un VE varie donc selon les filières de production utilisées, très différentes selon les pays. Des exemples très contrastés sont la France et Allemagne. En résumé la TC de 1 MWh produit est :
  • En France : 74 Kg
  • En Allemagne : 700 Kg, soit presque 10 fois plus
  • Sans parler du coût pour l’abonné, presque double en Allemagne.


Ceci résulte principalement de la politique énergétique allemande qui est un déni de réalité : Un investissement monstrueux (350 G€) en éolien intermittent et peu prévisibles, et en photovoltaïque (PV) mal adapté aux latitudes septentrionales sous lesquelles sa production hivernale est insignifiante, et évidemment nulle la nuit en toutes saisons, n’a pu compenser la sortie du nucléaire décidée pour des raisons idéologiques, et a amené un énorme développement du charbon et du lignite de Saxe extrêmement émetteur de CO2 et de pollutions variées. Pour plus de détail voir message dans ce blog : Le contre-exemple allemand.

5.2.4. TC selon le lieu : Ensemble du monde


(Source : Dossier CO2 « Les Echos » 3/12/2018)

  • TC : Avec 660 kg de CO2/Mwh final, le mix mondial 2017 est à peine meilleur que le mix allemand (700 Kg), et n’a pas changé depuis 1990
  • Mais la production électrique a beaucoup augmenté avec évolution du mix :
  • Les nouveaux renouvelables en cours de décollage, de 1,5% à 8,5%, mais leur pondération reste faible.
  • L’hydraulique en régression relative de 17,5% à 16%
  • Le nucléaire est resté constant en volume, donc relativement décroissant de 16% à 10,3%.
  • Malheureusement, le gaz s’est substitué uniquement au pétrole, la somme gaz + pétrole restant constante à 26,5%
  • Et le charbon reste, hélas, en tête et constant en pourcentage, c’est à dire en forte progression en volume…
  • Au global, les réductions d’émissions dues aux nouveaux renouvelables et au gaz ont été annulées par le recours croissant aux énergies fossiles.

On est donc, dans l’ensemble, très loin d’un véhicule électrique « zéro émission ». L’adjectif « locale » restera durable, si l’on ose dire !

5.2.5.  TC selon le moment : France

Dans un territoire donné, la trace carbone n’est pas constante : la demande en énergie varie dans le temps dans un facteur de l’ordre de 3, et les moyens mobilisés successivement pour satisfaire la demande dépendent de nombreux critères :
  • Les nouveaux renouvelables intermittents sont mobilisés les premiers malgré leur prix contractuel élevé parce qu’ils bénéficient d’une priorité d’écoulement. En France, ils n’excèdent jamais la demande, et peuvent être très faibles, notamment par régime anticyclonique (peu de vent) d’hiver (PV insignifiant le jour, et nul pendant les longues nuits). L’hydraulique au fil de l’eau, minoritaire, s’y ajoute.
  • Le nucléaire, exempte de CO2, très compétitif et de coût marginal (celui du combustible) presque nul.
  • L’hydraulique éclusée ou de haute chute
  • Les énergies fossiles, en commençant par le gaz, puis le fioul, puis le charbon.

 Il s’en suit que la TC ne sera pas constante. Elle pourra être :
  • Nulle (cas fréquent hors Bretagne et PACA), notamment en l’absence de grands froids, ainsi que les jours fériés.
  • Marginalement très élevée si les moyens exempts de CO2 sont déjà saturés : grands froids, températures fraîches de nuit par temps calme.


5.2.6. Réduction de la TC par stockage de l’énergie électrique

Les variations de la demande ne correspondant en rien à l’intermittence de certaines productions, une solution pourrait être apportée par le stockage. Mais les moyens de stockage économiquement utilisables sont limités :

  • Les STEPs hydrauliques stockent l’énergie par électrique par « pompage » dans les limites de leurs capacités, peu extensibles.
  • Aucun autre moyen de stockage n’est actuellement viable : tous les procédés de stockage physiquement possibles ont des coûts de stockage trop élevés, et souvent rendement insuffisant (hydrogène).
  • A long terme, à la fois par l’évolution technique et l’acceptation de prix beaucoup plus élevés, on pourra :
    • peut-être stocker du jour vers nuit (batteries, hydrogène..?),
    • mais jamais de l’été vers hiver, 365 fois plus long ! 
  • Le stockage ne peut être envisagé que s’il est moins cher (en investissements et/ou en exploitation) qu’une production permanente décarbonée. Or le nucléaire répond parfaitement à cet impératif…


5.2.7. Réduction de la TC de recharge des VE

  • Recharger pendant les heures creuses, c’est-à-dire la nuit
    • Majoritairement nocturne à domicile,
    • En charge lente
    • Sous impératifs d’horaires, comme chauffe-eaux. 
  • Si la substitution des VE aux VT est forte ; les heures « creuses » cesseront de l’être et de nouveaux moyens seront requis.
  • La substitution totale, étudiée dans un message dédié, nécessite d’augmenter de 1/3, soit 200 TW, la capacité nationale de production. Or :
    • Les énergies fossiles restent à proscrire, faute de quoi le VE n’apporte aucune réduction des émissions de CO2.
    • L’hydraulique est peu extensible.
    • Le PV ne produit rien la nuit, très peu d’octobre à février,
    • L’éolien est intermittent, absent par régime anticyclonique,
  • La seule solution est l’abrogation de la loi sur la transition énergétique et la construction de 15 EPR et 1,9 GW. La logique voudrait que l’on commence par Plogoff, idéalement placé en Bretagne qui en est dépourvue, sur une côte rocheuse baignée de forts courants marins qui éviteront le recours à des réfrigérants atmosphériques.

A défaut, comme chez nos amis Germains, le VE émettra plus de CO2 que le VT. Ceci est quantifié ci-dessous.

5.3. Trace carbone de fabrication du VE

Il existe peu d’informations fiables à ce sujet. Quelques pistes de réflexion :
  • Hors batterie, en séries comparables, le VE ne devrait être  ni plus lourd, ni plus cher qu’un VT, et donc  de TC équivalente



  • Mais la batterie, sans doute prépondérante, ne saurait être négligée. La photo ci-dessus montre une batterie-plateforme d’Audi E-tron, 90 KWh et 900 kg.
  • Elle comporte énormément d’électronique, chaque élément ayant sa propre carte de contrôle.
  • Sa surface est celle de tout l’habitacle
  • Pour des raisons de sécurité en cas de choc latéral accidentel, elle est ceinturée par un profilé lourd en aluminium extrudé, section environ 15 x 10 cm, masse évaluée à 140 kg.
  • Sa TC reste inconnue, mais est évidemment élevée !
  • La littérature anti VE pose l’hypothèse qu’un VE a une trace carbone double d’un VT, soit 14,4 t en comparaison du VT moyen à 7,2 t, mais cette allégation n’est nullement démontrée.

5.3.1. Comparaisons en entrée de gamme
  • Le véhicule électrique de l’Alliance décliné en 2 modèles très proches, les Renault Zoé et Nissan Leaf est, selon elle, le véhicule électrique le plus vendu dans le monde. 
  • Comparons la Twingo à essence avec la Zoé électrique munie d’une batterie de 22 KWh.
    • Rapport des masses :                         1,66
    • Rapport des prix avant bonus:          2,13
    • La moyenne des deux rapports :       1,88
  • Faute de mieux, à partir de ce raisonnement très discutable, appliquant ce même ratio de 1,88 au VT typique (nettement plus grand et lourd qu’une Twingo), on aboutit à :
  • TC VE = TC VT x 1,88 = 7,2 x 1,88 = 13,5 tonnes
  • Cette hypothèse est raisonnable, mais ce n’est qu’une hypothèse !
5.4. TC totale d’un VE

La TC totale du VE, contrairement à celle du VT ne peut se ramener à deux chiffres (fabrication plus utilisation puits à roue), car le second de ces chiffres doit être examiné selon la filière de production électrique. C’est l’objet du message suivant.

dimanche 12 juin 2016

Stockage photovoltaïque : indispensable et impossible?



Résumé

Stockage de l’énergie photovoltaïque de  réseau en France

Le stockage de  l’énergie n’est pas la seule solution à la mise en adéquation de la production photovoltaïque très intermittente, mais largement prévisible, avec la consommation nationale permanente et variable.
  • Aux niveaux actuels, l’absorption de l’énergie solaire nationale par le réseau n’est en aucun cas un problème technique, car les énergies vertes à priorité d’écoulement sont loin d’atteindre la consommation minimum française (30 GW). Nul besoin de stockage coûteux : sa production et sa consommation sont simultanées.
  • On peut envisager ensuite, sans coût supplémentaire, d’inciter les producteurs d’énergie électrique solaire à optimiser leurs installations pour l’hiver grâce à un abondement relevant leur compétitivité par rapport au prix du marché de gros qui est  plus élevé en hiver et pendant les pointes, en lieu et place des prix fixes garantis actuels.
  • On peut aussi agir ensuite sur la consommation par un système de facturation à prix variable en fonction du prix de marché de gros, ce qui est techniquement rendu possible par le compteur Linky, mais suppose de changer la loi.
  • Le stockage proprement dit, quel qu’en soit le procédé, et en dehors des STEPS limitées par la géographie, est toujours extrêmement coûteux, et d’un rendement variable, aggravé par une perte de stock dans le temps selon les cas (batteries, volants d’inertie). Dans un avenir lointain sans énergie fossile, un stockage diurne reste envisageable, mais un stockage sur l’année ne l’est en aucun cas. Ceci limite l’intérêt du stockage et de la production de l’énergie solaire qui est contra-cyclique, très faible en hiver quand la demande est élevée…

Rappelons toutefois que cette énergie reste pertinente dans :
  • Les applications hors réseau, dont les prix et volumes énergétiques sont radicalement différents, notamment mobilité et véhicules pour lesquels le stockage par batteries ou hydrogène s’impose.
  • Les pays du sud, où elle cesse d’être contra-cyclique :
    • Les pointes de consommation sont en milieu de journée et en été (climatisations)
    • Pas de chauffage en hiver
    • L’alternance jour / varie peu entre l’été et l’hiver
    • L’éventuelle absence de réseau national interconnecté justifie de petits réseaux locaux 

1. Situation du problème

La consommation d’énergie électrique en France est permanente, comprise entre 30 et 102 GW, avec de nombreuses variations aléatoires, diurnes, hebdomadaires et annuelles. Exemples de consommations, disponibles sur « Eco2mixRTE » :
  • Le jeudi 15 février 2015, ouvré, en hiver et relativement froid
  • Le samedi 15 août 2015, férié, en période de vacances et par beau temps

On constate bien dans le graphique ci-dessous, ces fortes variations, avec ici une amplitude (maxi/mini) annuelle de 90/31=3, pouvant atteindre 3,5, et une amplitude diurne généralement de 1,3 à 1,5.




La production d’énergie solaire est nulle la nuit, et astronomiquement prévisible le jour, à un facteur d’incertitude près qui est la nébulosité. La production photovoltaïque, selon la même source, et pour les mêmes dates, figure dans le graphique ci-dessus. Attention à la différence d’échelle des ordonnées entre les deux graphes : à la même échelle, la production solaire serait à peine visible, ce qui traduit une couverture de la consommation actuellement insignifiante, particulièrement en hiver:
  • Le jeudi 15 février 2015 : 0,4% cas défavorable
  • Le samedi 15 août 2015 : 2,5% cas favorable

Avant d’envisager de stocker l’énergie solaire, il faudrait donc aussi envisager de la produire en multipliant par plusieurs dizaines le parc installé. C’est possible, l’Allemagne l’a  fait, non sans inconvénients ! En France, l’écoulement prioritaire de l’énergie solaire ne pose aucun problème technique tant que sa puissance maximum reste très inférieure à la puissance minimum consommée qui est de l’ordre de 30 GW. Elle s’ajoute à l’hydraulique au fil de l’eau et à  l’éolien qui se substituent au nucléaire, généralement sans réduction des émissions de CO2, car ce dernier est émis principalement pendant les pointes de consommation qui sont toujours en hiver et la nuit.

2. Facteurs d’adéquation de l’offre et de la demande

On se place ici dans l’hypothèse où la production d’énergie solaire atteindrait une part significative de la demande totale d’énergie. Avant de se lancer dans un problématique stockage, que l’Allemagne ne fait pas malgré son énorme production verte aléatoire, on peut envisager  deux actions préalables :

1    2.1. Adapter (autant que faire se peut) la production solaire à la demande

La production d’un panneau solaire dépend évidemment de son orientation : idéalement, il doit être perpendiculaire aux rayons du soleil, ce qui supposerait qu’il soit mobile selon deux axes :
  • un axe parallèle à celui de la rotation terrestre pour suivre le soleil dans sa course diurne
  • un axe horizontal E-W pour suivre l’apogée du soleil à midi, de hauteur variable entre l’été et l’hiver
Cette mobilité améliore grandement la production, mais reste rare en raison de deux inconvénients :
  • Des coûts plus élevés d’investissement et de maintenance
  • Une plus grande surface au sol pour réduire le masquage de chaque panneau par ses voisins
 Dans le cas le plus fréquent, les panneaux sont fixes.
  • S’ils sont disposés sur un toit préexistant, ce dernier, plus ou moins exposé au sud,  impose son orientation et sa pente. Il subsiste un choix binaire : le faire, ou renoncer.
  • S’ils sont posés sur des structures dédiées, ces dernières doivent avoir une ligne de plus grande pente orientée vers sud. Mais cette pente reste à choisir :
    • Une pente égale à la latitude vient à l’esprit : été comme hiver, à midi, l’angle des rayons solaires restera toujours inférieure à 23°.
    • En fait, le prix contractuel de rachat de l’énergie produite étant fixe (autour de 120 €/MWh pour les installations récentes), toutes les installations privilégient la production autour du solstice d’été (21 juin) qui offre la plus longue exposition au soleil et une faible nébulosité. Ceci aboutit à produire un maximum d’énergie quand on n’en n’a pas besoin ! Ceci se vérifie bien en 2015 (graphe ci-dessous), où la moyenne des deux mois autour du solstice d’été (31,6 GWh/jour) atteint 3,3 fois la production des deux mois autour du solstice d’hiver (9,5 GWh/jour).


Cette situation déplorable n’est pas entièrement fatale : elle résulte de panneaux solaires très peu inclinés pour favoriser délibérément la production prépondérante, celle de l’été. Voir photos de la centrale de Cestas.

Le graphe ci-dessous, établi pour la latitude de Lyon assez représentative de la France, montre la puissance moyenne correspondant à l’ensoleillement astronomique (hors nébulosité) au cours de l’année, selon l’inclinaison du panneau face au sud.

La nébulosité étant plus élevée en hiver qu’en été, les courbes de production réelles à 30° et 60° se trouveraient en hiver (extrémités) moins favorables qu’indiqué, mais quand même beaucoup plus favorables que la courbe .

Pour inciter les producteurs à optimiser leurs installations, et particulièrement celles à créer, il faut sortir des prix fixes garantis assortis d’une priorité d’écoulement, qui sont un déni de la réalité, pour les remplacer, à titre transitoire, par un abondement en pourcentage fixe sur le chiffre d’affaires réalisé au prix du marché, sans priorité découlement, ce qui contraindrait les producteurs à s’intéresser au marché. Cet abondement serait pris en charge par la CSPE et limité au même montant. L’abondement nécessaire à l’apparition d’investisseurs serait un excellent indice de la compétitivité réelle de cette filière. L’abondement nul, indispensable à terme, n’est pas pour demain ! Voir notre message sur la centrale photovoltaïque de Cestas.

2.2. Faire varier le prix de l’énergie pour le consommateur

A l’exception de l’écart minime entre les tarifs « heures pleines » et « heures creuses », et de l’écart plus important, mais simpliste, du tarif « Tempo » peu répandu et limité aux puissances supérieures à 9 KW, le prix public de l’énergie électrique est généralement constant ou peu variable.

Dans le même temps, le prix de marché de gros international varie constamment, dans une fourchette extrêmement large qui va d’un prix légèrement négatif (écoulement des excédents allemands d’énergies vertes fatales et prioritaires, produites à contretemps) à plus de 1 000 €/MWh au cours du dernier record historique de consommation française de 102 GW le 8 février 2012. Dans un passé récent, les prix moyens se situaient autour de 40 €/MWh, ce qui correspond plus ou moins au coût complet du nucléaire ancien, mais depuis 2 ou 3 ans, il a tendance à descendre entre 30 et 40 €/MWh en raison des excédents verts allemands déjà cités, et aussi du développement dans ce pays, paradoxalement, d’une énergie noire (le lignite) très bon marché.

Il va de soi qu’un lien raisonnable (qui n’est pas une proportionnalité) entre le prix de gros et le prix public serait de nature à freiner la consommation quand celle-ci est élevée, donc chère et émettrice de CO2, et à l’encourager dans le cas contraire. L’utilisateur a en effet la capacité de différer ou d’anticiper certaines consommations avec des conséquences sur son confort qui soient nulles (chauffe-eau, congélateur) ou supportables (chauffage, appareils ménagers).
Ce sujet a été développé dans un message précédent.

3    2.3. Stocker l’énergie solaire : un énorme problème

Il va de soi que le stockage de l’énergie électrique ne dépend pas de la manière dont elle a été produite, et qu’il serait souhaitable de mettre cette énergie en stock quand la production globale, d’où qu’elle vienne,  est excédentaire, et donc bon marché, puis de la restituer quand elle est insuffisante en dépit d’un prix de gros beaucoup plus élevé, tous les moyens de production, même les plus chers, étant alors mobilisés. Vouloir stocker spécifiquement l'énergie solaire destinée au réseau n'a aucun sens!

Le stockage pourrait trouver sa viabilité économique dans l’écart entre les prix d’entrée et de sortie du stock, sous réserve du coût du stockage, et de son rendement immédiat et selon la durée de stockage. La plupart des méthodes de stockage ont été analysées dans des messages antérieurs. En dehors des STEPS (centrales hydrauliques de haute chute réversibles) limitées aux régions montagneuses, tous les procédés sont très coûteux, avec des rendements très divers.

Examinons comme un cas d’école:

Le graphe ci-dessous donne, pour l’année  2015, les productions et consommations diurnes de cinq jours typiques de l‘année à chacun desquels une couleur a été attribuée. Pour sa clarté, les productions solaires ont été affectées d’un coefficient arbitrairement fixé à 40, ce qui équivaut à prendre en compte un parc photovoltaïque 40 fois plus grand.



Le calcul des aires sous les courbes ci-dessus montre que, au cours de chacune des journées complètes ci-dessous,
un coeff. sur le parc solaire actuel de
répond à une demande journalière de 
après mise en stock de
dimanche 21 juin 2015, solstice d’été, férié
28
990 GWh
580 GWh
mardi 31 mai 2015, ensoleillé, ouvrable
41
930 GWh
500 GWh
samedi 15 août 2015, estival, férié
41
930 Gwh
500 GWh
jeudi 10 décembre 2015, ouvré, près solstice hiver
134
 1 720 GWh
1 450 GWh
5 jeudi 5 février 2015, ouvré, très froid
221
2 040 GWh
1 850 GWh

En termes simples et arrondis, pour produire toute l’énergie électrique par voie solaire, il faudrait :
  • En été, produire 1 000 GWh par jour, soit le parc 2015 multiplié par 50, et en stocker 600 GWh  avant le crépuscule
  • En hiver, produire 2 000 GWh, soit le parc 2015 multiplié par 200, et en stocker 1 800 Gwh avant le crépuscule.
En effet, en hiver, tous les paramètres sont défavorables :
  • La consommation est plus élevée
  • La durée du stockage augmente
  • Le montant à stocker augmente énormément pendant que la production baisse.
  • Ce stock énorme et doit être constitué en un temps plus  court par une production réduite
En hiver, un stock de 2 000 GWh nécessiterait :
  • 200 millions de batteries de 10 KWh à 5 000 € HT pièce, de durée de vie de 5 à 10 ans, soit 1 000 milliards d’euro?
  • ou 400 millions de volants d’inertie en béton de 5 KWh, dont le seul rotor pèse 1 700 kg, de prix inconnu, mais de longue durée de vie, tel que la société Energiestro les envisage. 
Même en été par beau temps, un stock de 600 GW nécessiterait 60 millions de ces mêmes batteries, soit environ 2 par abonné (mais situées en amont de cet abonné, faute de quoi la situation serait largement pire car la variabilité diminue quand elle concerne un grand nombre de consommateurs) pour un coût de 10 000 € tous les 10 ans, soit 1 000 € par an pour la seule continuité en été, beaucoup plus que le coût de l’électricité consommée !

Evidemment absurde ! Ces ordres de grandeur montrent qu’à l’évidence, l’énergie solaire thermique ne permet pas d’assurer une production suffisante, particulièrement en hiver, et nécessite par surcroît des capacités de stockage monstrueuses.

4    2.4.  Suppléer aux intermittences du solaire par  d’autres sources

Stocker de l’énergie solaire le jour pour pouvoir la restituer la nuit n’a d’intérêt que si, finalement, le coût de l’énergie restituée est inférieur à celui qui pourrait être produit par d’autres sources utilisées.

Une batterie de 10 KWh, coûtant 5 000 €, peut absorber 12 KWh, et restituer  1  KW pendant 10 heures, soit un rendement de 80%, et ce, une fois par jour pendant 5 ans, soit environ 1 500 cycles complets. Son coût d’amortissement sera de l’ordre de  3 € par cycle, c’est-à-dire 300 €/MWh restitué.
Le coût du MWh restitué est donc :
120 €/MWh photovoltaïque entrant / 80% de rendement + 300 € d’amortissement = 550 €/MWh

Quelle sont les substitutions possibles ?

2.4.1. Fossiles 
La substitution est très aisée, mais non envisageable, car on se place ici dans la nécessité absolue d’éliminer les émissions de CO2, tant pour réduire l’effet de serre que par épuisement des combustibles fossiles, bien qu’ils soient parfaitement adaptés à cet usage. Pas de charbon, ni de fioul, ni de gaz.

2.4.2. L’éolien a à peu près les mêmes inconvénients que le solaire : intermittent, moins contra-cyclique, mais aussi moins prévisible. Sa problématique de stockage n’est pas vraiment différente du solaire, et rien ne permet de penser que ces deux énergies intermittentes puissent  se suppléer mutuellement : un grand froid nocturne d’hiver peut parfaitement de produire par temps calme et couvert…

2.4.3. Le nucléaire.
Il n’est pas classé « renouvelable », mais reste disponible pour longtemps, surtout si l’on y intègre des technologies accessibles à moyen terme : surgénérateurs très économes, et thorium pratiquement illimité.
Il est incontestablement décarboné en exploitation.

Rappelons que l’énergie nucléaire de nouvelle génération, à construire aux nouvelles normes post-Fukushima, nécessite un investissement de l’ordre de 9 G€ par EPR de 1,8 Gw, soit 5 000 €/Kw si on l’achète à Areva, nettement moins si on l’achète à la Corée du sud. Pour 5 000 €, le même prix que la batterie de 10 KW qui ne produit rien et de durée de vie limité, on assure donc une production quotidienne de 24 KWh, pendant un demi-siècle, sans émission de CO2 en exploitation.

Pour réduire les émissions de CO2, le nucléaire est incontournable. La loi sur la transition énergétique, qui mène à une impasse, doit être abrogée ou amendée : voir message à ce sujet, points 5, 6 et 8. Le contre-exemple de l’Allemagne en apporte une preuve magistrale  par l’absurde. Les écologistes sincères finiront par le comprendre. Il faut cesser de développer à grand frais l’éolien et le photovoltaïque, et se concentrer sur le gaz, le nucléaire et l’efficacité énergétique (rendements, pompes à chaleur, isolation).