Affichage des articles dont le libellé est éolien. Afficher tous les articles
Affichage des articles dont le libellé est éolien. Afficher tous les articles

vendredi 8 décembre 2017

1 - Tableau des énergies primaires

  • Le rayonnement solaire (lumière et chaleur) dû aux réactions de fusion nucléaire dans le soleil, qui débouche sur :
    • La photosynthèse qui extrait le carbone contenu dans le gaz carbonique (dioxyde) pour en faire de la cellulose et autres composants de la biomasse dont :
      • le bois de chauffage et,
      • après fermentation, sur de très longues durées, les combustibles fossiles : lignite, charbon, pétrole, gaz naturel.
    • L’évaporation de l’eau de mer, génératrice :
      • des précipitations, notamment sur les reliefs où elles engendrent l’énergie hydraulique,
      • des différences de pressions atmosphérique.
    • De l’électricité sur des panneaux photovoltaïques au silicium
  • La rotation de la terre (énergie cinétique) sur son axe qui :
    • transforme ces différences de pression atmosphérique en vent, d’où l’énergie éolienne, et, par interaction avec la surface de la mer, (théoriquement) houlomotrice.
    • entraîne une variation locale des force gravitationnelles du soleil et de la lune, provoquant les marées utilisées par des centrales marémotrices (niveaux) ou des hydroliennes (courants).
  •  Les réactions nucléaires :
    • Naturelles dans l’écorce terrestre, qui donnent la chaleur de la géothermie profonde
    • De fusion provoquée, dans les centrales électronucléaires, qui créent de la chaleur dans l’eau primaire, utilisée directement (EBR) ou après échangeur (EPR) dans une turbine à vapeur.
    • De fission provoquée, à l’étude dans « Iter », dont on espère tirer également de la chaleur à un horizon lointain et indéterminé, et dans la fusion de l’hélium 3 importé de la lune !


Notons que toutes les énergies primaires sont issues de réactions nucléaires actuelles ou anciennes, y compris celles de la formation du système solaire et de ses planètes.

Ces énergies primaires peuvent :
  •  Soit être utilisées directement ou après une transformation minime :
    • Bois de chauffage, transformé ou non en granulés
    • Pétrole après raffinage (distillation permettant de séparer GPL, essence, gazole, fioul lourd, paraffine et divers composants aromatiques et/ou indésirables)
    • Gaz naturel après traitements divers, dont désulfuration et odorisation.
    • Autrefois, les moulins à eau (hydraulique), de même que les moulins à vent (éolien), actionnaient directement la meule du meunier ou les premières machines.
  • Soit être converties dans une autre forme d’énergie, principalement en électricité :
    • La chaleur résultant de la combustion des énergies renouvelables ou fossiles aussi bien que de la fission nucléaire, est convertie par un moteur thermique ou une turbine à vapeur ou à gaz, en énergie mécanique, elle-même immédiatement convertie en électricité par un alternateur.
    • Les énergies mécaniques hydraulique et éolienne sont systématiquement converties en électricité.
    • La lumière du soleil est convertie en électricité par des panneaux photovoltaïques (PPV).
Analyse et comparaison des énergies primaires

Nous associons chacun des tableaux ci-dessous à un message dédié qui analyse les avantages et inconvénients de chacune des énergies primaires (lignes 1 à 27) selon six critères essentiels (colonnes a à f du tableau de synthèse) :
  • a. Coût
  • b. Facilité de transport
  • c. Possibilité de stockage
  • d. Durabilité, caractère renouvelable
  • e. Emissions de CO2 résultant de leur utilisation
  • f. Disponibilité par rapport aux variations de la demande
Le titre de chaque tableau est un lien vers l'analyse détaillée.


Energies mécaniques renouvelables, non directement utilisables
Hydraulique d’eau douce
Fil de l’eau
1
Eclusées
2
Haute chute
3
STEPs
4
Hydraulique maritime
Marémotrice
5
Hydrolienne
6
Houlomotrice
7
Eolien
Terrestre
8
Maritime
9

   
    Barrage de Bort-Les-Orgues (Corrèze)

    Champ d'éoliennes

Energie solaire renouvelable, non directement utilisable
Panneaux photovoltaïq.
Diffus sur toit
10
Fermes PPV
11

     Ferme solaire de Cestas (Gironde)
                                   
Energies thermiques non renouvelables,
directement utilisables
Fossile solide
Charbon
12
Lignite
13
Fossile liquide
Fiouls lourds
14
Gazole, Fioul
15
Cogénération
16
Essence
17
GPL
18
Fossile gaz
Gaz naturel
19
Fission nucléaire
20

     Puits de pétrole

Thermique renouvelable, directement utilisable
Solaire
Naturel
21
Capteurs therm.
22
Biomasse et bio- carburants
Biomasse brute
23
Granulés
24
Bioéthanol
25
Biodiesel
26
Géothermie profonde
27

      Chauffe-eau solaire


5 - Energies primaires mécaniques renouvelables dédiées à l’électricité


Lignes 1 à 11 du tableau de synthèse

Hydraulique d’eau douce (lignes 1 à 4)

L’énergie potentielle résulte des précipitations sur les reliefs de l’eau (pluie, neige, grêle) qui descend des montagnes à la mer. Autrefois appelée « houille blanche », cette énergie primaire comporte différentes variantes :
  • Centrales au fil de l’eau, (ligne 1), dont les production sont assez bien prévisibles selon le précipitations dans leur bassin versant, mais néanmoins fatale (non modulables).
  • Centrales dites « éclusées », (ligne 2), de faible chute, à production continue plus ou moins modulables.
  • Centrales de haute chute avec lac supérieur (ligne 3), parfaitement disponibles à tout instant et pour une durée limitée de la capacité du lac supérieur. Leur production à la demande est parfaitement adaptée à la production des pointes modérées.
  • Centrales de haute chute réversibles (STEPs) (ligne 4), avec chacune un lac supérieur et un lac inférieur, disponibles à tout instant, permettant le stockage de l’énergie électrique par pompage du lac inférieur vers le lac supérieur dans la limite de leurs capacités, mais inaptes à une production continue. Elles permettent de satisfaire à la demande des pintes extrêmes, lorsque les autres moyens sont saturés. 

Cette énergie est particulièrement intéressante :
  • Très économique en montagne, avec un coût marginal presque nul une fois l’installation amortie, ce qui est le cas de la plupart d’entre elles.
  • Capacité de rétention d’énergie potentielle dans le lac amont (ligne 3)
  • Disponibilité instantanée dans la limite de la capacité du lac amont (lignes 3 et 4), et capacité de stockage (ligne 4).
  • Indéfiniment renouvelable, avec une durée de vie presque illimitée
  • Aucune émission de CO2 en exploitation
  • Elle produit, bon an mal an, 10 à 12 % de l’électricité nationale

Toutefois :
  • Les barrages, qui noient des vallées et remplacent ainsi un écosystème par un autre, sont loin d’être parfaitement écologiques... Leur construction s’accompagne d’une importante émission de CO2 (ciment, acier, engins…).
  • Dépendantes des précipitations, les centrales hydrauliques sont fatales si leur capacité de stockage amont et/ou leur chute sont faibles. Dans un barrage au fil de l’eau, la production est faible à l’étiage, faute de débit, et pendant les crues, faute de dénivellation. Pour toutes, la production dépend des précipitations.
  • La plupart des sites favorables en France étant déjà équipée, la capacité d’extension de cette énergie primaire est faible, malgré la vogue de la micro-hydraulique de capacité très limitée. Notamment, les précieuses STEPs ne sont nullement une solution définitive au stockage des énergies intermittentes vertes, faute de sites favorables.
  • Le lieu de production ne peut pas être choisi, alors que le transport de l’énergie électrique vers le lieu de consommation a ses limites : quelques centaines de kilomètres, sauf à recourir aux coûteuses lignes DCHT (courant continu à très haute tension)
  • Le risque associé est faible, mais pas nul : plusieurs écroulements de barrages hydroélectriques ont eu lieu. En France, la ruine du barrage de Malpasset a fait 423 mort à Fréjus en 1959, mais cet ouvrage ne produisait pas d’électricité. En Italie, un glissement de terrain dans le lac amont a entraîné le débordement, sans destruction, du barrage hydroélectrique de Vajont, qui a fait 1 900 morts en 1963. Des catastrophes majeures ont eu lieu, notamment en Chine.

Hydraulique maritime (lignes 5 à 7)
  •  L’unique centrale marémotrice de la Rance (ligne 5) recourt à 24 turbines réversibles résistant à l’eau de mer, dont les coûts de fabrication et de maintenance sont élevés. Les célèbres 14 mètres de marnage ne sont qu’un extrême, et ne constituent en rien une dénivellation moyenne, laquelle serait plutôt de l’ordre de 3 mètres, ce qui est déjà beaucoup en mer. La production, parfaitement prévisibles comme les marées, n’en est pas moins intermittente, avec deux arrêts par marée, et d’importantes variations au cours du mois lunaire et de l’année solaire qui déterminent l’amplitude des marées. Sa production moyenne de 57 MW, soit 24% de sa puissance installée (240 MW), soit encore un cumul de 500 GWh par an, représente 1% de la production électro-hydraulique française. Elle n’a jamais atteint son équilibre économique. Elle n’est transposable que dans les rares régions du monde ayant un marnage semi-diurne élevé, et nulle part ailleurs en France.
    Usine marémotrice de la Rance à St Malo
  • Plusieurs prototypes d’hydroliennes (ligne 6), grandes turbines immergées dans des zones à fort courant de marée, ont été testés. Il n’en reste plus qu’une en service. Elles restent fatales quoique parfaitement prévisibles, et sont très coûteuses pour une raison simple : un courant de 4 nœuds, soit 2 m/s, fort et rare, donne la même pression dynamique qu’une chute de 0,20 mètre, trop basse pour être économiquement exploitable. Il est donc peu probable que ces projets soient suivis. Là encore, les zones d’installation, qui doivent allier fort courant et profondeur suffisante, sont peu nombreuses : En France, principalement le Fromveur au sud d’Ouessant, et le Raz Blanchard au nord de la pointe de la Hague.
    Hydrolienne (image de synthèse)
  • L’énergie houlomotrice (ligne 7), énergie des vagues citée pour mémoire, n’est pas réellement envisageable : la houle est une énergie primaire extrêmement intermittente, aléatoire, complexe et très peu prévisible. Elle se manifeste avec des longueurs d’onde, des hauteurs et des fréquences très variables qui compliquent singulièrement son exploitation, sans parler des problèmes liés aux tempêtes et à la maintenance (« fouling », c'est à dire pousse des algues et coquillages indésirables).


Cette filière repose sur l’exploitation de vent, par nature très variable et peu prévisible. Sa problématique principale est le « facteur de charge », défini comme le rapport entre la puissance moyenne produite sur l’année et la puissance nominale (maximum) de l’éolienne. Ce facteur dépend évidemment des années qui comportent plus ou moins de vents adaptés, mais aussi de la conception : la puissance maximum de l’alternateur sera atteinte plus souvent si l’hélice est de plus grand diamètre, mais l’éolienne sera aussi plus chère. Pratiquement les facteurs de charges constatés ou prévus en France sont de l’ordre de :
  • 18% en éolien terrestre (8)   
  • 25% en éolien maritime (9)   
L’avantage de 7 points, soit 40%, pour ce dernier ne compense pas les surcoûts liés à la construction et à la maintenance en mer, qui sont proches d’un doublement.

                                          Prototype terrestre d'éolienne maritime "Halidade" 
                                          avec alternateur direct, à Saint-Nazaire

L’installation d’éoliennes terrestres ne peut se faire que dans des régions ventées (côtes, plaines ou reliefs accessibles pour la maintenance) non urbaines car l’acceptabilité par les riverains s’est fortement réduite. Les éoliennes maritimes posées sur le fond requièrent des profondeurs modérées, mais néanmoins éloignées des côtes pour les rendre acceptables, bien qu'également contestées par les pêcheurs, les plaisanciers et les riverains du littoral. Des éoliennes maritimes flottantes sont envisagées avec des coûts encore plus élevés ; il n’y a plus de limite sur la profondeur, mais la distance à la côte allongera les lignes de raccordement au réseau et les mouvements du flotteur et du mât compliqueront la maintenance. Comment aborder par mauvais temps sur un engin flottant en haute mer, dont le mât oscille de plusieurs mètres ? Même l'hélicoptère, menacé par l'immense rotor, apparaît incertain !

L’énergie éolienne, totalement renouvelable, n’existerait pas sans le tarif garanti cumulé avec la priorité d’écoulement, car ce tarif reste environ 3 fois supérieur au prix de marché de gros, (5 fois pour le maritime) ajouté au caractère fatal d’une filière qui produit quand elle peut, et non quand on en a besoin, une énergie électrique économiquement impossible à stocker.

Tableau des énergies primaires mécaniques dédiées à la production électrique:



9 - Energies secondaires « vecteurs d’énergie »


Dans l’onglet CO2 :
Les énergies :
Les utilisations :

Sujets Connexes


 (lignes 28 et 29 du tableau de synthèse)
  
L’électricité (28)

En France continentale, elle est produite très majoritairement (85%) par voie thermique, généralement non renouvelable :
  • 78% électronucléaire
  • 8% fossiles non renouvelables, principalement gaz et fioul, et charbon en cours d’extinction
  • <1 biomasse="" p="" par="" renouvelable="">
  • Rappelons qu’en raison du principe de Carnot, la voie thermique a un rendement de conversion en électricité qui n’excède pas 33% (nucléaire) à 58% (meilleures centrales à gaz à cycle combiné).
 Mais aussi 15% par voie mécanique renouvelable :
  • 12% hydraulique, dont certaines centrales de haute chute, dites STEPs, sont capables de stocker l’énergie électrique excédentaire pour la restituer pendant les crêtes de consommation, avec un bon rendement de l’ordre de (90%)² = 81%
  • 2% à 3% d’énergie éolienne, pour laquelle la notion de rendement n’a pas de sens.
  • Et enfin par panneaux photovoltaïques (PPV), de l’ordre de 1% à 2%, également sans notion de rendement.
L’énergie électrique (indépendamment de ses sources) a presque toutes les qualités :
  • Strictement non polluante
  • Pouvant être produites à partir d’énergies primaires très variées
  • Extrêmement souple, avec un excellent rendement de conversion avec l’énergie mécanique dans les deux sens, et ce, dans une très large gamme de puissances, du watt au gigawatt.
  • Aisément convertible dans ses différentes variantes de tension, d’intensité, de fréquence, de nombre de phases ou AC/DC.
  • Aisément transportable à des distances moyennes (quelques centaines de kilomètres) en THT, ou même longues avec des lignes DC THT (courant continu très haute tension) plus coûteuses.
Elle a aussi quelques inconvénients :
  • Au-delà de 42 V (norme TBT), elle est d’autant plus dangereuse que la tension est élevée, pour les personnes (électrocutions) et les biens (court circuits, amorcages, courants de défaut, échauffement).
  • Elle est pratiquement impossible à stocker en l’état (condensateurs secs) et difficilement par voie électrochimique (batteries et super-capacités coûteuses), mais elle est stockable sous forme d’énergie potentielle dans les STEPs (centrales hydrauliques réversibles de haute chute) en montagne de capacités limitées et peu extensibles.
  • Sa disponibilité est limitée à celle des énergies primaires utilisées pour sa production, donc pratiquement très large.

L’hydrogène 
(ligne 29 du tableau de synthèse)

Il n’a que deux modes de production envisageables :


  • A partir des hydrocarbures : par reformage principalement du méthane (ligne 19), au prix d’une forte émission de CO2, mais pouvant être auto-thermique, c'est à dire sans apport d’autre énergie extérieure. L’enthalpie latente de l’hydrogène ainsi produit est de l’ordre de 50% de celle du méthane consommé, soit un rendement de 50%.
  • L’électrolyse de l’eau (ligne 28) est envisageable, mais est extrêmement consommatrice d’énergie électrique. L’enthalpie latente de l’hydrogène produit est de l’ordre de 70% de l’énergie électrique consommée.

Une fois produit, l’hydrogène est stockable :
  • Durablement sous forme comprimée à pression élevée, mais sa légèreté conduit à des réservoirs volumineux et solides, et donc lourds, et l’énergie utilisée pour la compression obère le rendement de l’opération
  • Pour quelques heures, après liquéfaction à très basse température qui consomme environ 30% de son enthalpie de combustion.
  • Dans des hydrures métalliques qui sont l’objet de recherches.
 Sa réutilisation peut être effectuée :
  • Directement en énergie électrique par des piles à combustibles coûteuses, de durée de vie limitée, et d’un rendement n’excédant pas 50%
  • En énergie mécanique par des moteurs à gaz, ou turbines à gaz pouvant être à cycle combiné, avec un rendement de 35 à 55%
  • En énergie thermique par combustion avec un rendement de 100%
  • Cette réutilisation de l’hydrogène est strictement non polluante puisque qu’elle n’émet que de l’eau.
Il a peu d’intérêt en matière d’énergie de réseau en raison des médiocres rendements cumulés, mais il offre aux véhicules routiers une alternative aux batteries avec un avantage de puissance massique, donc d’autonomie. Il est théoriquement utilisable, sous forme liquéfiée, comme carburant aéronautique en remplacement des hydrocarbures. Il est utilisé depuis longtemps en tant que carburant en association avec l’oxygène liquide comme comburant pour les moteurs-fusées où il constitue de couple carburant /comburant le plus performant.


Résumé des vecteurs :