Affichage des articles dont le libellé est électronucléaire. Afficher tous les articles
Affichage des articles dont le libellé est électronucléaire. Afficher tous les articles

mercredi 30 janvier 2019

VE6 Comparaison VE / VT polyvalent


Le VE : Innovation pérenne ou rêve écologiste ?
« Dans un monde inondé d’informations sans pertinence, le pouvoir appartient à la clarté. »  Yuval Noah Harari


VE6 - Comparaison CO2 VE / VT polyvalent

6.1. Configurations envisagées

La comparaison porte sur 4 véhicules typiques :
  • VT Essence de 1 300 kg (toutes les masse sont des « PTC »)
  • VT Diesel de 1 400 kg
  • VT Hybride à essence de 1 500 kg
  • VE Electrique de 1 800 kg, équipé d’une batterie de 60 KWh, chargé par de l’énergie électrique de 7 origines possibles :
    • Electrothermique au charbon
    • Electrothermique au fioul
    • Electrothermique au gaz conventionnel
    • Electrothermique au gaz à cycle combiné
    • Electronucléaire pure
    • Issue du mix moyen français de l’année 2017
    • Issue du mix moyen allemand
On aboutit donc à 10 configurations, dont 3 VT plus 1 VE rechargé selon 7 filières.


6.2. Hypothèses de modélisation adoptées

6.2.1. Energie mécanique requise aux 100 km : Nous y intégrons :
  • Travail de la force de roulement,
  • Travail de la force aérodynamique
  • Toute l’énergie cinétique créée pour les VT essence et diesel
  • Un tiers de cette énergie pour le VT hybride et le VE qui en récupèrent les deux tiers.
  • Aucune énergie potentielle
6.2.2. Rendement du « carburant » électrique


Ce rendement qui reste toujours bon prend en compte deux facteurs :
  • La batterie : toute l’énergie électrique y rentre et en sort avec un rendement estimé à 80%
  • Le moteur : son rendement baisse un peu quand le couple croît, mais ce dernier n’est pas toujours au maximum. On adopte 95%
  • Rendement global : 80% x 95% = 76%
6.2.3. Rendement du carburant thermique

La détermination du rendement qui est médiocre (principe de Carnot) est complexe. Nos hypothèses sont résumées ci-dessous :

Rendements moteur VT
Polyvalent
10 à 130 km/h
Urbain 10 à 70 km/h
Détermination
Diesel
34%
25%
Tableau ci-dessous
Essence
29%
22%
Coeff. diesel x 0,85
Hybride essence
37%
27%
Empirique

6.1.1.2.                       Calcul des énergies requises

Méthodologie :

Les paramètres déterminent les énergies, puis le « carburant » requis, mécanique ou électrique

 

Pour chaque masse, nous avons établi un tableau de 13 lignes, de V=10 Km/h à V=130 Km/h par incrément de 10 km/h. Quatre tableaux ont ainsi été établis pour 1300 Kg, 1400 Kg ci-dessous à titre de spécimen, 1500 Kg et 1800 Kg.


Les colonnes donnent les énergies mécaniques, rendements et énergie « carburant » requises par les véhicules :
  • VT D, VT E, et leur moyennes générales et urbaines
  • Rendements et rendements moyen général et urbain
  • Les moyennes pondérées sont calculées sur des plages de vitesse :
    • Polyvalent 10 à 130 Km/h
    • Urbain : 10 à 70 Km/h
  • Les deux colonnes de droite donnent les énergies en base 100 à 130 KM/h.
6.1.2.                  Tableau de calcul du CO2 en usage polyvalent

Les énergies requises aux niveaux « Carburant » et « Mécanique » étant ainsi déterminées, la méthodologie de calcul du CO2 émis figure ci-dessous. On notera que le rendement de Carnot, toujours mauvais, intervient dans les deux cas :

  • Au niveau du moteur thermique du VT 
  • Au niveau de la centrale électrothermique pour le VE
  • Sauf dans le cas de l’énergie électrique hydraulique, éolienne et PV qui ne passent pas par l’énergie thermique, mais qui sont très minoritaires.


Codes couleur :
  • Fond vert : Entrées
  • Chiffres noirs : VT
  • Chiffres bleus : VE
  • Lignes rouges : résultats intermédiaires essentiels
  • Deux dernières lignes en gras : résultat final en termes de CO2.
6.1.3. Résultats et graphes en usage polyvalent

Les consommation moyennes calculées selon ce tableau (7,2 l d’essence ou 5,5 l de gazole aux 100 km) sont largement supérieures aux consommations NEDC, mais elles seront reconnues par les utilisateurs comme étant conformes à l’utilisation réelle, ce qui valide les hypothèses adoptées.

Les émissions  de CO2 de chaque configuration résultant de ce tableau en fonction du kilométrage parcouru, figurent ci-dessous ;
o   en cumul (tonnes)
o   et par kilomètre (gr/Km





Les écarts considérables d’émissions des VT par rapport aux chiffres NEDEC qui sont autour de 110 gr/km, s’expliquent aisément par la prise en compte :
  • De la réalité des consommations, soit +40 gr/km, pour un total de 150 g/km
  • Des émissions amont, évaluée à 20% (selon VE4), soit 30 gr/km, aboutissant à 180 gr/km, asymptote des courbes pour les kilométrages élevés
  • De la TC de fabrication, fixe, donc inversement proportionnelle au kilométrage, et donc extrêmement élevée en début d’utilisation
Le dossier « CO2 Monde » des Echos du 4 décembre donne une moyenne de 259 gr/Km pour un VT essence, cohérente avec ce graphe


6.1.4.              Conclusions sur les TC en usage polyvalent

Courbes en pointillés : véhicules tirant toute leur énergie du carburant.
  • VT à essence, meilleur jusqu’à 40 000 km
  • VT diesel, meilleur  de 40 000 km à 90 000 km
  • VT hybride, pénalisé par sa TC de fabrication plus élevée (batterie, double motorisation), meilleur au-delà de  90 000 km
Courbes en traits pleins, relatives au même VE selon l’origine de son énergie électrique de recharge
  • Française ou nucléaire ou renouvelable, le gain en CO2 est massif au-delà de 45 000 km.
  • Issue du charbon, le VE émet deux fois plus que le VT.
  • Issue des autres filières fossiles, 3 courbes proches) : seule la mieux placée (gaz à cycle combiné) permet au VE de faire mieux que le VT :
    • A essence au-delà de 110 000 km,
    • Diesel au-delà de 150 000 km
    • Hybride à essence au-delà de  200 000 km.
  • Issue du mix allemand, le VE émet plus que le VT, même pour des kilométrages élevés !
Finalement, la seule configuration qui réduit significativement les émissions de CO2 est celle qui réunit :
  • Le VE
  • Et les seules filières renouvelables et nucléaire
6.1.5. Et si on changeait de point de vue ?

« Carburant » requis selon la vitesse, base 130 km/h

Revenons sur les 2 colonnes de droite du tableau des énergies requises de 6.1.1.2., qui donne les besoins en carburant du VE et du VT D, avec base 100% conventionnelle à 130 km/h.



Partant de 130 km/h (au sens du tableau en 6.1.1.2. ci-dessus, comportant de la création et du gaspillage d’énergie cinétique), le carburant requis par le VE :
  • Décroît avec la puissance mécanique requise grâce à un rendement maintenu, voire amélioré à faible vitesse et à la récupération des 2/3 de l’énergie cinétique
  • Grâce à un faible impact énergie cinétique à vitesse basse, dont les 2/3 sont récupérés.
Pour le VT, au contraire, le carburant requis :
  • Décroît d’abord avec la force aérodynamique, 
  • passe par un minimum vers 80 km/h, 
  • puis ré-augmente à plus du 100% en raison du mauvais rendement moteur thermique à puissance très réduite ajouté au plein impact du gaspillage de l’énergie cinétique.
Tous les utilisateurs de VT le savent fort bien : on consomme plus dans les embouteillages que sur autoroute !

Conclusion évidente : le VE est mieux adapté à la ville qu’à la route. Nous reprenons donc la présente comparaison VE vs. VT en usage urbain dans le message suivant.




mercredi 2 décembre 2015

Centrale solaire Neoen à Cestas : Quelle erreur !




Résumé

La nouvelle centrale solaire de Cestas (Gironde) construite par Neoen, présentée comme la plus grande d’Europe, atteint une puissance installée de 300 MW capable de produire 350 GWh par an, soit un facteur de charge de 13%. Elle est basée sur un contrat d’écoulement prioritaire à 105 €/MWh, prix en baisse par rapport aux précédents, pendant 20 ans.

L’investissement atteint 285 M€ et occupe 260 hectares. Le chiffre d’affaires escompté sur 20 ans est égal à 2,6 fois cet investissement initial. La lumière du soleil étant gratuite, et tous les traitements électriques automatisés, les frais d’exploitation se réduisent à la maintenance (nettoyage des panneaux, maîtrise de la végétation). Sa rentabilité est évidente, mais sa compétitivité alléguée par Neoen ne l’est nullement.  

Cette superbe réalisation a néanmoins quelques menus défauts congénitaux :

  • L’écart entre le prix de marché moyen de 40 à 50 €/MWh et les 105 €/MWh garantis, sera payé par l’abonné via la CSPE.
  • Elle est contra-cyclique, produisant beaucoup en été et milieu de journée, peu en hiver, rien la nuit, à l’opposé de la demande plus forte en hiver et la nuit, alors qu’il n’existe pas de moyen de stockage économiquement viable loin des montagnes.
  • Face à un prix de marché très variable entre 0 et 1 000 €/MWh, elle n’est compétitive que dans les périodes de forte demande pendant lesquelles elle ne produit pas ou peu : en hiver et la nuit !
  • Presque toute sa production prioritaire viendra réduire la production électronucléaire décarbonée dont le coût marginal est extrêmement bas. Elle n’aura donc qu’un effet insignifiant sur la réduction des émissions de CO2.
  • De ce fait, elle ne compensera jamais sa propre trace carbone liée à l’investissement et à l’absence de forêt sur 260 hectares.
  • Elle ne produira, à contretemps, que 4% d’une tranche électronucléaire moyenne qui tient sur environ 50 hectares.
  • Au final, elle aura aggravé les émissions de CO2, et coûté 735 M€ à la collectivité, payés soit directement par la CSPE, soit indirectement par l’amortissement des installations électronucléaires sur une production réduite.
Cette énergie présupposée verte est donc en fait une erreur stratégique économique et écologique majeure !

Les contrats à prix fixe garanti et priorité d’écoulement devraient être remplacés par des contrats d’abondement en pourcentage fixe sur un chiffre d’affaires réalisé au prix de marché, sans priorité. La vérité des prix, et donc la compétitivité, apparaitraient alors clairement. De là à parler de compétitivité…

Développement

Les médias, et notamment « Les Echos » nous font part de l’inauguration d’une centrale solaire construite par Neoen, qui serait la plus puissante d’Europe, sur 260 hectares, dont 246 de panneaux solaires, à Cestas, en Gironde, et annoncent la compétitivité de l’énergie solaire. Une annonce d’une telle importance mérite quelques minutes de réflexion...

Le tableau ci-dessous inclut les données publiques, communiquées par Neoen ou connues. Des calculs simples aboutissent à des paramètres significatifs.



Commentaires :

  • La production annoncée de 350 GWh par an correspond à 13% de la puissance installée sur l’année. C’est peu, mais c’est incontournable pour des panneaux quasi-horizontaux fixes sous cette latitude de 45°N.
  • L’investissement ramené au GWh produit est de 814 M€/GWh. C’est environ le quart de l’investissement nécessaire pour la même puissance en électronucléaire à construire. Mais la durée de vie est environ le tiers, pour autant qu’elle soit connue. L’avantage réside surtout dans les moindres frais financiers, qui obèrent par ailleurs les installations à très longue durée de vie.
  • Le chiffre d’affaires annuel est de l’ordre de 37 M€, ce qui correspond, sur la durée du contrat (20 ans), à 735 M€.  couvrant 2,6 fois l’investissement initial (sans tenir compte des frais, mais ceux-ci sont assez bas : pas de matière première, entretien se limitant pratiquement au nettoyage des panneaux et à la maîtrise de la végétation). La rentabilité pour l’investisseur est assurée, son risque se limitant à une durée inférieure aux prévisions.
  • Le prix de revente de l’énergie électrique à 105 €/MWh, en baisse par rapport aux installations plus anciennes,  est utilisé par l’exploitant pour affirmer la compétitivité de son installation, car ce prix est en effet proche des réacteurs nucléaires EDF en projet au Royaume-Uni.



Photo « 20 minutes »

  • Cependant, en première analyse effectuée sur des valeurs moyennes sur l’année, cette affirmation se révèle être une allégation, car :
    • Le coût des réacteurs en référence est lourdement grevé de frais financiers.
    • Si la centrale de Cestas était construite à Birmingham (54° de latitude Nord et nébulosité élevé), sa production serait très réduite pour les mêmes coûts : elle ne serait pas compétitive !
    • Selon la Cour des Comptes, et selon les définitions utilisées notamment en matière de financement, le MWh électronucléaire produit en France revient entre 33 et 50 €/MWh, démantèlement inclus, cohérent avec un prix moyen français de 40  à 50 €/MWh sur le marché de gros auquel il participe pour près de 80%.
  • En seconde analyse, cette compétitivité n’a aucun sens, car elle n’est pas simultanée avec la demande :
    • La production photovoltaïque est intermittente, nulle la nuit et très faible en hiver, quand on en a besoin, et excédentaire en été et en milieu de journée, quand on n’en n’a pas besoin.
    • Elle produit donc aux moments où le besoin est faible, inférieur à la capacité nucléaire, parfois inférieur aux livraisons prioritaires des autres énergies fatales (éolien, hydrolien, hydraulique au fil de l’eau…), amenant des prix de marché inférieurs à la moyenne, donc moins de 40 €/MWh, voire nuls ou négatifs (importations vertes d’Allemagne). L’écart avec les 105 €/MWh contractuels sera réglé par l’abonné via la CSPE !
    • Les consommations élevées, excédant la capacité électronucléaire et donc relevant le prix de marché au niveau du prix des centrales à énergies fossiles, se produisent en hiver en raison de l’augmentation de la demande en chauffage et éclairage. Les crêtes, qui sont toujours de nuit, par temps très froid, en début ou fin de jours ouvrables, amènent des prix très élevés du MWh, pouvant parfois dépasser les 1000 €/MWh pour plus de 100 GW consommés en France, mais la centrale Neoen, comme toutes les semblables, n’en bénéficiera pas : elle est contra-cyclique.
    • Sa compétitivité est donc virtuelle, limitée aux moments où elle ne peut pas produire !
    • Par surcroît, elle ne remplace rien : la capacité installée doit pouvoir couvrir les crêtes de consommation, aux importations près, sous peine de « black out », comme le 13 décembre 1978. On ne peut donc pas prendre en compte les centrales fatales dans la capacité installée, faute de pouvoir en disposer à tout moment. Elles viennent en plus…
    • Un écologiste en fin d’une vidéo de présentation, après avoir expliqué que l’énergie solaire n’est pas vraiment écologique eu égard à son emprise au détriment de la végétation, suggère de la « compenser » par l’arrêt d’un réacteur nucléaire. Il n’a rien compris :
      • Une centrale solaire, dont la production à temps partiel est équivalente à sa pleine puissance 13% du temps, ne peut en aucun cas remplacer une source d’énergie pilotée, potentiellement permanente, comme une centrale électrothermique ou électronucléaire.
      • La production annuelle de Cestas (350 GWh sur 260 hectares) ne dépasse guère 4% d’une tranche de centrale nucléaire moyenne (1GW à 90%, soit 7 900 GWh sur environ 50 hectares).
    • Le stockage de l’énergie électrique, souvent présenté comme une solution à l’intermittence des centrales solaires, n’en n’est pas une :
      • Le stockage diurne est envisageable uniquement par des STEPS (centrales hydrauliques de haute chute réversibles), qui nécessitent de hautes montagnes, principalement les Alpes, à 1000 km aller-et-retour de Cestas, et donc pratiquement impossibles en coût et en capacité de transport.
      • Les batteries et l’hydrogène, peuvent assurer le stockage diurne au plan technique, mais pas au plan économique :
        • L’hydrogène, car son mauvais rendement de restitution / entrée vient multiplier par 3 le prix de l‘énergie amont, avec ajout du coût très élevé du stockage proprement dit.
        • Les batteries, car leur durée de vie limitée amène un amortissement  par cycle plusieurs fois supérieur au prix de l’énergie stockée.
      • Le stockage saisonnier de l’été à l’hiver, sur au moins trois mois, n’est même pas envisageable.
  • Par surcroît, la conception de cette centrale de Cestas est particulièrement critiquable en matière de saisonnalité. Par un effet pervers du contrat de vente à un prix constant totalement déconnecté du prix de marché, l’investisseur n’a aucun intérêt à s’intéresser à ce marché qui reflète la demande, mais tout intérêt à optimiser sa production annuelle cumulée, fût-elle à 14 h en été. Ainsi, au lieu d’opter pour des panneaux orientés vers le sud avec une inclinaison un peu supérieure à l’angle de latitude, ici 50° par exemple,  pour améliorer la production en hiver, Neoen a choisi des panneaux horizontaux selon l’axe nord-sud, qui privilégient outrageusement l’été, sont simples à monter, et autorisent une densité de panneaux solaires approchant les 100% de la surface du terrain, part non négligeable de l’investissement. L’inclinaison est-ouest, de l’ordre de +/-10 degrés alternés, ne privilégie guère les débuts et fins de journée, mais a certainement pour but principal de réduire le coût de la maintenance : moindre accumulation de poussières, et écoulement de la pluie qui chasse une partie de la poussière déposée.
Conclusion

Cette superbe réalisation technique n’aboutira qu’à :
  • Economiser un peu d’uranium (sans réduire les coûts d’exploitation des centrales électronucléaires impliquées qui sont presque indépendants de leur production dont le coût marginal est extrêment bas (2 €/MWh).
  • Augmenter la charge de la CSPE pour l’abonné EDF.
  • Ne pas réduire les émissions de CO2, sauf coïncidence rare entre une pointe nécessitant l’appel aux centrales électrothermiques avec un ensoleillement significatif.
  • Ne pas compenser sa trace carbone d’investissement qui vient s’ajouter aux autres émissions !
Il est indispensable de sortir des prix fixes garantis assortis d’une priorité de livraison, qui sont un déni de la réalité, pour les remplacer, à titre transitoire, par un abondement en pourcentage fixe sur le chiffre d’affaires réalisé au prix du marché, qui contraindrait les producteurs à s’intéresser à ce marché. Il serait pris en charge par la CSPE. L’abondement nécessaire à l’apparition d’investisseurs serait un bon indice de la compétitivité de cette filière. L’abondement zéro, indispensable à terme, n’est pas pour demain !

La compétitivité de l’énergie photovoltaïque ne sera avérée que lorsqu’une société industrielle privée  lancera une telle centrale, dans une concurrence libre et non faussée par des contrats de prix garanti ou d’écoulement préférentiel, ou autres subventions à l’investissement.


lundi 23 novembre 2015

Réduire vite et beaucoup le CO2 en France




Bien que le CO2 ne soit pas à proprement parler une pollution, puisqu’il est au cœur de la vie par la photosynthèse, et sans danger direct pour l’homme, le GIEC a largement démontré qu’il est quand même le principal responsable de l’effet de serre qui conduit au réchauffement climatique, lequel est le plus grave risque environnemental actuel, loin devant les diverses pollutions qui sont en forte régression en France et dans la plupart des pays de l’OCDE. La réduction des émissions mondiales de CO2 est donc l’objectif prioritaire majeur, le seul qui soit vraiment indispensable.

A cet effet, dans quelques jours, la COP21 va commencer et tenter d’obtenir des engagements de réduction, ou de moindre progression, des émissions de CO2 anthropique de la part les pays participants, presque tous. En France, où la situation en matière de CO2 est bien plus favorable que celle de la plupart des pays comparables, de nombreuses voies  de forte réduction existent néanmoins.

Elles peuvent être classées en quatre familles promues par trois incitations économiques :
  • Substituer entre eux des combustibles fossiles : parmi eux (charbon, pétrole, gaz), préférer le gaz, et réduire prioritairement le charbon.
  • Rechercher l’efficacité énergétique dans toutes les applications.
  • Substituer l’énergie électronucléaire, permanente, aux combustibles fossiles
  • Envisager des véhicules alternatifs, électriques ou à hydrogène.
  • Mettre en place ou renforcer les incitations économiques générales :
    • La taxe carbone pour réduire la compétitivité des énergies fossiles et particulièrement du charbon.
    • Le « yield managment » de la tarification de l’énergie électrique, pour réduire les crêtes en anticipant ou reportant certaines consommations
    • La suppression de l’absurde coefficient 2,58 appliqué au chauffage électrique selon la norme RT 2012


Les solutions 1 à 3, peu onéreuses et faciles à mettre en œuvre, permettent de gagner du temps en réduisant très vite les émissions. Il s’en suit que les nouvelles énergies vertes (photovoltaïque, éolien terrestre ou maritime, hydrolien) n’y figurent pas : très coûteuses et fatales, handicapées par le coût élevé et le rendement déplorable du stockage qu’elles nécessitent en raison de leur intermittence, elles ne sont jamais compétitives à un horizon prévisible par rapport aux mesures 1. à 3. ci-dessus, et constitueraient donc plus une entrave qu’un avantage, compte tenu des ressources limitées disponibles à cette fin. Ceci n’empêche évidemment pas d’utiliser les installations qui existent déjà et sont donc devenues contractuelles.

La production délocalisée qui nécessite des « smart grids » (réseaux intelligents), très tendance, n’y figurent pas non plus, pour deux raisons majeures :
Le coût de 1 000 000 installations individuelles de production électrique de 1 KW (quelles s’elles soient) sont beaucoup plus onéreuses et ont une trace carbone très supérieure à celle d’une installation centralisée de 1 Gw. En outre leur rendement est beaucoup moins bon.
La variabilité de la consommation diminue évidemment quand on la considère globalement, puisque les consommations de base, très dispersées entre zéro et la puissance de l’abonnement, n’interviennent que par leur moyenne. Vouloir créer des installations de production au niveau le plus aval donc à une puissance installée finalement beaucoup plus élevée, avec un facteur de charge très bas. Dans l’exemple ci-dessus, il faudrait avoir 1 000 000 d’installations individuelles non pas de  KW mais probablement plutôt de  5 KW…

Les étapes

Pour la clarté de l’exposé, les étapes  1 à 4 sont considérées successivement. Il va de soi qu’elles peuvent largement se superposer, ce qui n’en modifie pas le résultat final.



Substitution de combustibles (Voir détails par secteur et par combustible)

A pouvoir calorifique égal le charbon émet 64% de plus que le pétrole, et le gaz 21% de moins. La substitution du gaz au charbon et au pétrole est :
  • Possible en agriculture, industrie et chauffage, dès que le réseau de gaz est présent, et hors applications de mobilité
  • Facile en production électrique
  • Difficile ou impossible en sidérurgie, dans les transports et en chimie

Cette substitution permet ainsi à elle seule une baisse de 6% des émissions de CO2 à consommation énergétique constante par définition, et ce rapidement et au moindre coût. Elle se produira spontanément grâce à une taxe carbone suffisamment élevée qui pénalise beaucoup plus le charbon, et un peu plus le pétrole, que le gaz.

Efficacité énergétique (Voir détails par secteur et par combustible)

C’est en principe la voie à privilégier : obtenir le même résultat en utilisant moins d’énergie. Pratiquement impossible en sidérurgie, elle peut en revanche être significative en agriculture, industrie et chauffage, et aussi dans la production électrique grâce au meilleur rendement des nouvelles centrales au gaz. Elle se poursuivra dans les transports, surtout par la modification des usages (covoiturage et autocar) et l’apparition de véhicules économes.

L’efficacité énergétique permet d’envisager un gain de 23% sur l’énergie fossile consommée sans révolution majeure, donc assez vite. S’ajoutant aux substitutions du § 1. , la réduction des émissions est de 27%, déjà très appréciable. Elle sera renforcée par la taxe carbone qui vient renchérir les prix des énergies fossiles.

Substitution électronucléaire (Voir détails par secteur et par combustible)

L’électronucléaire peut apporter une solution majeure à toutes les applications de chauffage (agriculture, industrie, résidentiel et tertiaire) qui peuvent être électriques avec une meilleure efficacité énergétique, grâce à un rendement naturel de 100%, voire beaucoup plus avec des pompes à chaleur. Grâce à ces dernières, la substitution peut se faire à parc nucléaire constant ou faiblement croissant.

Cette substitution aboutit à elle seule une réduction de 28% supplémentaires de l’énergie fossile consommée et de des émissions de CO2, ce qui est énorme. Elle aboutit à une baisse cumulée des émissions de CO2 de 45%, ce qui excède l’engagement français de -40% en 2030. Elle nécessite, outre la taxe carbone, la mise en place de la tarification variable de l’électricité pour anticiper ou reporter les consommations de crête par un tarif dissuasif en crête.

Aller plus loin : les véhicules (Voir détails par secteur et combustible)

L’objectif prévu par la loi française de -75% en 2050 nécessiterait d’aller vraiment plus loin, par une évolution profonde des transports qui représentent 63% du pétrole consommé dans l’hypothèse 2030 ci-dessus.

Le passage de 60% des véhicules sur source électrique, soit via des batteries, soit via l’hydrogène, soit par des caténaires, est absolument inenvisageable avec des énergies fatales dont la production initiale est déjà très coûteuse, et dont l’intermittence impose un stockage requérant des investissements lourds dont la durée de vie est limitée (batteries) et/ou dont le rendement est médiocre (hydrogène).

Il faut donc être conscient de ce que le passage à 60% de véhicules alternatifs, bien loin d’être rapide et peu onéreux, serait un bouleversement industriel majeur nécessitant l’achat par les utilisateurs de 20 millions de ces véhicules, avec des impacts lourds sur les constructeurs, les équipementiers, les réseaux d’énergie (électrique et hydrogène), le parc électronucléaire à augmenter lourdement, l’industrie des batteries, la pétrochimie, la production d’hydrogène électrolytique. Ce serait aussi un problème fiscal car il serait évidemment impossible à l’Etat de subventionner ces véhicules alternatifs (2 millions par an = 13 milliards d’euros par an au bonus actuel) alors même qu’il perdrait les énormes ressources de la TICPE et de la TVA afférente (29 milliards d’Euros par an), soit un trou de 42 milliards d’euros.

Ceci étant dit, cette transition de 60% des véhicules vers l’énergie électrique aurait un impact considérable sur les émissions de CO2 : une réduction de 24% des sources fossiles, s’ajoutant aux précédentes pour aboutir à une baisse  cumulée des émissions de 58% par rapport à la situation actuelle.


Conclusion

Ce résultat, excellent mais très coûteux, reste très en deçà des engagements (heureusement révocables) pris par le Gouvernement en vue d’une réduction de 75% à l’horizon 2050. L’écart entre les émissions selon cette dernière et selon l’objectif ci-dessus, est de 42%/25%, soit un coefficient 1,68. Certes, beaucoup de choses peuvent se passer en 35 ans, mais qu’en l’état actuel des connaissances et des ressources, on ne peut qu’affirmer,  cet objectif ne sera pas tenu parce qu’il ne peut pas l’être, sauf à accepter une régression considérable avec toutes ses conséquences économiques et sociales.

On peut même s’interroger préalablement sur la pertinence des véhicules alternatifs en France: le problème du CO2 étant mondial, et absolument pas local, l’optimum économique mondial est de procéder d’abord à la réduction des émissions de CO2 résultant de toutes applications possibles hors véhicules, AVANT de passer aux véhicules alternatifs qui sont coûteux et contraignants. Les véhicules, et plus encore les avions, sont en effet l’application des énergies fossiles qui est la plus difficilement substituable. Il vaut donc mieux commencer par  tout le reste, pour aller plus vite, dépenser moins et réduire davantage les émissions de CO2.


Autrement dit, il est moins coûteux et plus efficace pour la France de subventionner des réductions d’émissions hors de ses frontières, en commençant par les centrales électrothermiques au charbon, ou pire au lignite comme en Allemagne, que de faire rouler des véhicules alternatifs sur ses routes ! Une telle organisation internationale reste à élaborer, mais pourrait s’inspirer des droits d’émission négociables.

Etape 3 : Substitution électronucléaire

Etape 3 : Substitution électronucléaire


Rappelons que le profil de notre blog fait figurer le « politiquement correct » dans la liste des « je n’aime pas ». Personne n’ose parler de ce qui suit, qui est pourtant absolument évident, et constitue une voie majeure pour réduire les émissions de CO2, et limiter le changement climatique. Nous le faisons en toute indépendance, sans tabou et sans militantisme d’aucun bord, avec l’objectivité nécessaire aux décisions technico-économiques.

Voyons les réductions d’émissions que l’électronucléaire permet de réaliser :
  • Elle est sans effet direct sur la production de fonte dans les hauts fourneaux. Indirectement, le moindre coût de l’aciérie électrique (retraitement des ferrailles) permet un meilleur recyclage des métaux ferreux, et donc une moindre demande en fonte. C’est peu de chose, et difficile à chiffrer, donc non pris en compte ici.
  • En agriculture et industrie, la quasi-totalité des besoins en chauffage (fours, serres, bâtiments agricoles et industriels, traitements thermiques…), en énergie mécanique autre que mobile (pompes, ventilateurs, usinage, manutention…) et en éclairage peuvent provenir de l’électronucléaire. Une baisse de 60% du gaz naturel est envisageable. Compte tenu des applications de  mobilité nécessitant du gazole, cette baisse serait plutôt de 30% pour le pétrole.
  • En chauffage résidentiel et tertiaire, l’électronucléaire est presque partout substituable aux combustibles fossiles, selon des modalités à examiner de plus près :
  • Les applications de chauffage sont avantageusement réalisées par des pompes à chaleur qui permettent une efficacité énergétique très supérieure à 100%, de l’ordre de 200% (aérothermiques), 300% (géothermiques) et même 500% (hydro-thermiques).
  • L’investissement  lourd dans les centrales électronucléaires, dont le prix de marché se situe autour de 3 milliards d’euros par GW (ce qui ne fait que 3 000 €/KW), n’est économiquement possible que si la centrale produit en moyenne au moins 75% de sa puissance nominale. Il n’est donc pas envisageable de dimensionner le parc électronucléaire pour les pointes de consommation.
  • Il est donc souhaitable de généraliser le chauffage biénergie par adjonction d’un chauffage de base électrique de faible puissance, à tous les bâtiments actuellement chauffés au fioul ou au gaz. Il est utilisé seul jusqu’à concurrence de la puissance nucléaire installée, les pointes de consommation restant assurées par le fioul et le gaz.
  • L’extension simultanée des pompes à chaleur qui réduisent la consommation du chauffage électronucléaire, et des chauffages de base électriques qui l’augmentent doit permettre une large compensation, et donc une faible augmentation du parc nucléaire.
  • Dans les transports, la seule substitution possible est relative aux véhicules électriques à batterie, ou hybrides rechargeables. Malgré d’énormes distorsions de concurrence (subventions, avantages de circulation et de stationnement, pas de TICPE…), ils peinent à se développer en dehors de quelques marchés de niches (auto-partage urbain, flottes urbaines). Envisageons avec optimisme qu’ils puissent réduire de 10% la consommation globale de carburants, c’est-à-dire, avec une efficacité énergétique fortement accrue par les moteurs électriques remplaçant les moteurs thermiques, réduire d’un facteur 3 l’énergie consommée, devenue électrique.

Dans cette substitution, les facteurs économiques jouent un rôle essentiel




Cette substitution aboutit à elle seule une réduction de 28% supplémentaires de l’énergie fossile consommée et de des émissions de CO2, ce qui est énorme. Elle aboutit à une baisse cumulée des émissions de CO2 de 45%, ce qui excède l’engagement français de -40% en 2030, mais n’est tenable qu’avec un développement très modéré de l’énergie électronucléaire, qui implique le renouvellement des centrales en limite d’âge, et un petit nombre de tranches supplémentaires.