Affichage des articles dont le libellé est charge. Afficher tous les articles
Affichage des articles dont le libellé est charge. Afficher tous les articles

mardi 22 novembre 2016

Comparaison électrique / diesel / essence



Table des matières du blog www.8-e.fr

Sujets connexes
Emissions de CO2 sur investissement et exploitation par filière de production


Résumé

Les Renault Zoé électrique, Twingo essence et Clio diesel sont des véhicules urbains d’entrée de gamme comparables. La Zoé est vendue avec un contrat de location de la batterie qui débarrasse le client du risque lié à la batterie et lui apporte une bonne prévisibilité des coûts. La comparaison des trois véhicules est ainsi très pertinente.

Autonomie 
  • Grâce au calculateur, supposé sincère, proposé par Renault, il est possible de déterminer l’autonomie selon la vitesse, la température extérieure et le type de jantes. Dans les conditions optimum, l’autonomie annoncée de 250 km, est confirmée à des vitesses modérées, inférieures à 90 km/h, mais tout excès de vitesse et/ou froid vif ramènera rapidement cette autonomie vers moins de 200 km, voire 150 s’ils se cumulent.
  • Si l’on utilise une batterie usagée dont la capacité est réduite de 25%, et que l’on veut conserver une marge de sécurité de 20%, les chiffres précédents sont presque à diviser par deux : l’aller et retour des villes nouvelles au centre de Paris reste jouable, mais de justesse : la préoccupation relative à la décharge de la batterie sera présente.
  • Par comparaison, malgré des hypothèses très prudentes quant à la consommation (majoration d’un tiers des chiffres officiels NDEC, plus majoration jusqu’à 60% moteur froid), les Twingo (35 litres d’essence) et Clio (45 litres de gazole) offrent respectivement 480 km et 810 km en valeur typique, soit 3 ou 5 fois plus que la Zoé. La préoccupation d’autonomie disparaît.
Coût du carburant et du véhicule
Pour la Zoé, le prix du carburant s’entend prix de location de la batterie inclus.
  • On constate que, contrairement aux comparaisons biaisées n’incluant pas le coût de la batterie, le « carburant » électrique est toujours plus coûteux que l’essence, sauf au-dessus de 20 000 km par an, kilométrage rarement atteint par des véhicules urbains. La Clio diesel a le prix le plus bas autour de 0,06 €/km, la Twingo autour de 0,08 €/km, alors que la Zoé, partant de 0,15 €/km pour 6 000 km/an, atteint encore 0,10 €/km pour 12 000 km/an. Le prix du risque batterie n’étant sans doute pas très différent du prix de location, le prix très bas d’utilisation d’un véhicule électrique au long cours, est donc un mythe.
  • Si l’on compare les coûts d’utilisation des véhicules, amortissement et entretien inclus, et bonus écolo déduit, le résultat ci-dessus change peu : le véhicule électrique est le plus cher, mais se rapproche des autres pour les kilométrages élevés, supérieurs à 20 000 km/an. La Twingo à essence est la moins chère, mais perd son avantage pour les kilométrages élevés dont la Clio diesel a besoin pour amortir son surcoût d’achat par rapport à la Twingo, laquelle apparaît comme le meilleur choix économique en usage urbain.
Conclusion

Pour l’utilisateur :
  • La Zoé est plus chère à l’achat et à l’utilisation qu’une Twingo ou une Clio, avec l’inconvénient d’une autonomie très limitée.
  • Ses avantages de silence, de conduite simple et apaisée et d’entretien réduit ne compensent pas ses inconvénients. Seule, l’image peut la sauver.
 Pour la collectivité :
  • La Zoé, exempte de pollution locale et de bruit, est un véhicule citadin idéal. Une forte réduction des émissions de CO2 s’y ajoute, mais uniquement dans les pays disposant d’une électricité décarbonée, dont la France.
  • La trace carbone de fabrication des véhicules thermiques est rarement prise en compte, car mal connue, mais elle est loin d’être négligeable. Le supplément dû à la batterie des véhicules électriques, pourrait révéler quelques très mauvaises surprises !
  • Entre le bonus à l’achat et l’absence de TICPE et TVA sur le carburant, l'avantage fiscal consenti à un véhicule électrique dépasse, sur sa durée de vie, le prix d’achat d’un véhicule thermique équivalent, comme si ce dernier était offert au client ! Ceci ne pourra pas être maintenu indéfiniment, et relativise fortement la "compétitivité" des véhicules électriques.
Développement

Renault propose trois véhicules d’entrée de gamme :
  • La Zoé « Life », motorisation R75 (la meilleure autonomie), purement électrique, avec batteries louées par l’utilisateur.
  • La Twingo « Zen », véhicule urbain exclusivement à essence.
  • La Clio « Life », disponible en version diesel moyennant un supplément significatif.




Dans un véhicule, l’énergie mécanique d’origine électrique (peu taxée) est manifestement beaucoup moins chère que l’énergie d’origine thermique très taxée (TICPE et TVA). Pour autant, on ne peut rien conclure sans prendre en compte le facteur de coût prépondérant qui est le remplacement de la batterie, pouvant approcher les 10 000 €. Or la durée de vie de la batterie est mal connue faute d’expérience, et dépend d’une foule de paramètres. Pour l’acquéreur d’un véhicule tout électrique, c’est une incertitude majeure.

Pour tous ses véhicules électriques, Renault propose uniquement une location des batteries selon un barème qui prend en compte le kilométrage effectué. Le risque « batterie » est donc supporté par le constructeur, et l’acquéreur bénéficie ainsi d’une vision claire de ses coûts, à partir de laquelle une comparaison avec les deux sources d’énergie thermique usuelles, l’essence et le gazole, est aisée.

Nous y procédons ci-dessous, en termes d’autonomie et de coût.

Véhicules


Les puissances sont très proches : 52 à 55 KW. Toutefois, la transmission CVTX (variateur mécanique continu) de la Zoé a un rendement et une ouverture (ratio des rapports extrêmes) inférieurs à une boîte conventionnelle à 5 vitesses. La Zoé est aussi 31% plus lourde que la Clio, ce qui se répercutera sur les accélérations. La Twingo, moins puissante, mais de loin plus légère, dispose du meilleur rapport puissance/masse.

Sans surprise, avec une vitesse maximum de 135 km/h, la Zoé n’est pas une autoroutière. Bien qu’également présentée comme citadine,  la Twingo permet la circulation sur autoroute avec une réserve de puissance limitée (maximum 156 km/h) par l’effet aérodynamique de sa hauteur supérieure, rançon de sa faible longueur de citadine. La Clio est la plus polyvalente.

Les dimensions extérieures sont proches, avec toutefois 10 cm de moins en hauteur sur la Clio, et 45 cm de moins en longueur sur la Twingo. Toutes sont des deux portes avec hayon arrière.

Autonomie

Renault propose aussi sur son site « Zoé » un calculateur d’autonomie qui prend en compte la vitesse du véhicule, la température extérieure (chauffage ou climatisation qui pénalise l’autonomie) et les jantes. Il se base sur une batterie neuve de 22 KWh et ne comporte pas de marge de sécurité. Nous le considérons par hypothèse comme sincère.

Les consommations affichées des véhicules thermiques étant notoirement sous-estimées, nous avons retenu comme consommation à chaud, la moyenne des consommations (urbain + extra urbain) affichées majorée d’un tiers (+33%). Pour les petits trajets commencés à froid, ces consommations ont en outre été affectées d’un coefficient 1,6 pour un trajet de 2,5 km (100 km en 20 jours par mois) se réduisant progressivement à 1,0 pour un trajet supérieur à 45 km (1 800 km en 20 jours par mois). Bien qu’approximatifs, ces chiffres sont réalistes, en aucun cas optimistes.

Prenons le Zoé dans le cas le plus favorable :
  • Batterie 22 KWh neuve
  • Jantes 15 pouces
Le graphe ci-dessous donne l’autonomie en fonction de la vitesse et de la température. Il montre un optimum vers 50 km/h, et une décroissance en-dessous (impact des consommateurs fixes, notamment du chauffage en hiver), comme au-dessus (apparition des pertes aérodynamiques, rapidement prépondérantes).


Par temps doux, en usage urbain incluant des voies rapides jusqu’à 90 km/h, on pourra compter sur 250 km d’autonomie, qui est d’ailleurs la distance pratique annoncée par Renault dans ses documents commerciaux. Mais par grand froid, il vaudra mieux tabler sur 200 km.

Tout excès de vitesse se paiera très cher en autonomie : à 110 km/h, l’autonomie se réduit à 200 km en été, ou 150 en hiver. A 130 km/h, on perd 40 km de plus, vers   160 et 110  km.

Les chiffres ci-dessus sont compatibles avec un usage quotidien entre les villes nouvelles (Cergy-Pontoise, St-Quentin-en-Yvelines, Marne-la-Vallée) et le centre de Paris en conservant une bonne marge de sécurité, avec une recharge par nuit.

Mais une batterie n’est pas éternellement neuve loin de là : sa capacité décroît et son remplacement n’est proposé par Renault qu’à partir de 25% de baisse. Il faut aussi intégrer une décharge maximum de 80% de la batterie, soit une marge de sécurité de 20%, et le client a le droit de choisir des jantes 17 pouces. Que  devient l’autonomie dans ce cas moins favorable ?


La chute est sévère par rapport au cas favorable précédent. 

Reprenant le cas du temps doux, en usage urbain incluant des voies rapides jusqu’à 90 km/h, l’autonomie est ramenée à 130 km, réduite à guère plus de 100 km par temps froid : elle est donc pratiquement divisée par deux par la prise en compte du vieillissement de la batterie et de l’indispensable marge de sécurité.

A vitesse élevée, à proscrire par temps froid, l’autonomie repasse sous la barre des 100 km : 80 km à 110 km/h, ou pire, 70 km à 130 km/h.

Notre banlieusard des villes nouvelles devra faire des recharges complètes, être attentif à sa batterie, et ne pas dépasser 90 km/h s’il fait froid. C’est jouable, mais la préoccupation sera permanente, et aucun imprévu n’est permis.

A titre de comparaison, selon les critères pessimistes de consommation retenus ci-dessus, les véhicules thermiques offrent :
  • Twingo : un réservoir de 35 litres d’essence permettant de 380 à 600 km selon la longueur des trajets avec démarrage à froid.
  • Clio : un réservoir de 45 litres de gazole permettant de 640 à 1020 km selon les mêmes facteurs.

Ces autonomies ne dépendent que peu de la vitesse en dessous de 90 km/h, et sont indépendantes de la température extérieure. Elles sont pratiquement 3 à 5 fois supérieures à celle de la Zoé.

Coût du carburant et du véhicule

Renault propose à ses clients le barème de location de la batterie suivant :
  • Jusqu’à 7500 km/an : forfait mensuel de 69 €
  • A delà de ce plafond : 0,05 € /km
  • Ou forfait mensuel de kilométrage illimité de 119 €.
Le coût du carburant électrique doit prendre en compte ce coût de location de batterie, largement prépondérant. Le prix du KWh s’y ajoute : il dépend largement des conditions de recharge et du tarif EDRF (base, jour/nuit, tempo…). Nous avons adopté pour l’analyse un prix fixe de 0,159 €TTC/Kwh, CSPE incluse.

La consommation est éminemment variable selon une foule de paramètres. Nous nous basons pour la comparaison sur une consommation plutôt optimiste de 8 KWh/100 km qui autorise en moyenne une autonomie de (22 / 8) x 100 = 275 km.

A noter que 8 KWh = 28,8 MJ (mégajoule) = 0,685 kg d’hydrocarbure, soit approximativement 0,8 litre de gazole ou un 1 litre d’essence. Ceci semble très bas, mais il ne faut prendre en compte le fait qu’un moteur électrique a un rendement 3 à 4 fois supérieur à un moteur thermique. Les consommations thermiques équivalentes seraient donc 3 à 4 litres d’essence ou 2,4 à 3,2 litres de gazole, ce qui est cohérent.

Sur ces bases, le prix du « carburant » (incluant la location de batterie) ressort comme suit :



On constate que, malgré son image d’économie due aux comparaisons biaisées n’incluant pas le coût de la batterie, le « carburant » électrique est toujours plus coûteux que l’essence, sauf au-dessus de 20 000 km par an, kilométrage rarement atteint par des véhicules urbains.

En dépit des récents réajustements fiscaux de la TICPE en faveur de l’essence et au détriment du gazole, ce dernier reste largement compétitif en coût, mais nous verrons plus loin que cette compétitivité peine à amortir le coût plus élevé du véhicule diesel.

Prenons maintenant en compte les coûts du véhicule :
  • Amortissement du prix d’achat (bonus électrique déduit) sur 8 ans ou 160 000 km (le premier des deux). La plus grande longévité supposée des véhicules électriques n’a pas été prise en compte : s’il est vrai que leur entretien, hors changement des batteries, est minime, et d’ailleurs intégré ci-dessous, il est fort à craindre que ces véhicules, et notamment leurs batteries, ne soient victime d’obsolescence, tout comme la plupart des appareils numériques ! Ainsi, des batteries améliorées ne seraient probablement pas compatibles avec les véhicules existants, amenant le propriétaire à changer son véhicule pour bénéficier des dernières améliorations, plutôt que d’investir dans un remplacement coûteux de batteries obsolètes.
  • Frais d’entretien évalués à :
    • Electrique :         1,0 €/100 km
    • Essence :             2,5 €/100 km
    • Diesel :                3,5 €/100 km
  • Frais d’assurance non pris en compte : sans doute inférieurs pour des véhicules qui roulent moins, et moins vite, alors qu’on cherche à les comparer sans a priori, ils apporteraient un biais dans la comparaison.

Sur ces bases, le prix d’utilisation du véhicule est le suivant :
  •  La Zoé électrique est significativement plus chère quel que soit le kilométrage. Ceci résulte de son coût d’achat élevé malgré le bonus, auquel s’ajoute le prix de location des batteries, non compensés par le prix très bas du carburant électrique et l’excellent rendement du moteur électrique.
  • Malgré un coût de carburant significativement plus bas (vu précédemment), la Clio ne parvient pas à amortir le surcoût de la motorisation diesel et de son entretien.
  • Manifestement, la voiture la plus économique est la Twingo qui s’impose quel que soit le kilométrage.
Conclusion

Pour l’utilisateur :
Sur les bases actuelles, la Zoé a de graves inconvénients :
  • Plus chère à l’achat qu’une Twingo malgré le bonus
  • Plus chère à l’utilisation qu’une Twingo essence ou une Clio diesel
  • Beaucoup moins performante
  • Avec une autonomie qui reste très limitée, la cantonnant à un rôle strictement urbain, sans exception, avec la préoccupation constante des recharges.
Elle a quelques avantages spécifiques :
  • Le silence aux vitesses basses et moyenne. (A grande vitesse, les bruits de roulement et aérodynamiques sont prépondérants et cet avantage se réduit)
  • Le confort d’une conduite simple et apaisante.
  • Un entretien extrêmement réduit.
Pour la collectivité :
  • L’absence presque totale de pollution locale et de bruit qui en fait un véhicule citadin idéal. (Restent quand même les particules fines résultant de l’usure des freins et des pneumatiques)
  • La forte réduction des émissions de CO2, mais uniquement dans les pays disposant d’une électricité décarbonée. Il y en a malheureusement très  peu : France, Suisse, Scandinavie, Canada, Islande… Dans tous les autres pays, et notamment dans ceux qui utilisent des centrales thermiques au charbon, un véhicule électrique émet globalement plus de CO2 qu’un véhicule thermique !
  • La trace carbone de fabrication des véhicules n’est jamais prise en compte, car mal connue, mais c’est une grave lacune. On admet généralement que la fabrication d’un véhicule thermique amène une émission de CO2 qui pourrait être égale à la moitié de l’émission due au carburant pendant toute sa durée de vie. La prise en compte, en supplément, de la batterie des véhicules électriques, pourrait révéler quelques très mauvaises surprises !
  • Le coût pour la collectivité des avantages fiscaux des véhicules électriques, est très élevé, en deux termes :
    • Le bonus d’achat de 6 300 €
    • L’absence de TICPE, et de TVA afférente (contreparties de la mise à disposition gratuite des infrastructures routières, et non taxes vertes), correspondent à un manque à gagner de l’ordre de 9 000 € dans la durée de vie d’un petit véhicule sur 160 000 km.
    • Pour un total (15 300 €) largement supérieur au prix d’achat d’une Twingo neuve (13 030 €) !
    • Ces avantages fiscaux ne pourront pas être indéfiniment maintenus.
  • Plus globalement, on peut penser qu’il n’appartient pas à l’Etat de choisir des solutions technologiques telles que la voiture tout électrique qui ne constitue probablement pas la méthode la plus efficace pour réduire rapidement les émissions de CO2 dues aux véhicules routiers. C'est la thèse de Jean Tirole, prix Nobel d'économie 2015.
  • L'Etat ferait mieux d’instaurer une taxe carbone aussi universelle que possible (compensée par une baisse universelle de la TVA à pression fiscale constante) et de laisser le marché choisir les solutions. On verrait alors sans doute émerger les hybrides et, parmi elles, le segment des véhicules légers et très aérodynamiques, actuellement inexistant.


mardi 8 décembre 2015

Electricité et CO2 : Le contre-exemple allemand



Résumé :

Le contraste entre les politiques française et allemande en matière de production électrique est beaucoup plus violent qu’on ne l’imagine, avec des résultats très inattendus : malgré le dictionnaire, les « Grunen » ne sont pas verts du tout !

En lisant ce message vous apprendrez que le développement des énergies photovoltaïque et éolienne en Allemagne a nécessité 350 milliards d’Euros d’investissements, mais n’a abouti qu’à baisser la production nucléaire décarbonée, et non les énergies primaires fossiles. A l’arrivée, le MWh consommé en Allemagne émet 10 fois plus de CO2 que son homologue français, et coûte 53% plus cher à la production, et 87% plus cher au détail.

Cette situation désastreuse s’explique par le fait que, en raison de leur facteur de charge très faible (13% et 18% respectivement) les puissances nominales installées en solaire et éolien sont monstrueuses (35 GW et 55 GW respectivement), très supérieures à la puissance moyenne requise par le pays. Quand les conditions (soleil et vent) sont favorables, l’opérateur de réseau n’a pas d’autre choix que de les brader à l’export. Quand elles ne le sont pas, la production au lignite augmente ! Dans les deux cas, l’abonné allemand paye…

Dans ce contexte, des véhicules à batteries ou à hydrogène n’apportent évidemment aucune baisse d’émissions de CO2, mais plutôt une aggravation ! Il faudrait finir par comprendre que l’écologie ne pourra être efficace que si elle veut bien envisager l’aspect économique des problèmes… Le prix Nobel d'économie Jean Tirole arrive exactement aux mêmes conclusions.

Message

Le CO2, ou dioxyde de carbone, n’est pas à proprement parler un polluant, puis qu’il est au cœur de la vie par la photosynthèse, au même titre que l’eau, et sans aucun danger direct pour l’homme. Mais le GIEC a largement démontré que l’augmentation de son taux dans l’atmosphère est quand même le principal responsable de l’effet de serre qui conduit au dérèglement climatique, le plus grave risque environnemental actuel. La réduction des émissions mondiales de CO2 est donc l’objectif prioritaire majeur.

Bien que notre blog soit consacré à la France, il est intéressant d’analyser l’exemple allemand pour évaluer les résultats économiques et écologiques obtenus par une politique largement dictée par les écologistes politiques, les « Grunen », qui privilégiant à outrance les énergies renouvelables par a priori antinucléaire largement diffusé dans leur opinion publique.

Production Allemagne : valeurs annuelles

L’historique de la production électrique allemande annuelle est donné par le graphique suivant :



Du bas vers le haut, en production annuelle :

  • L’hydraulique est constante et faible : il y a peu de montagnes en Allemagne.
  • Les « Autres » sont renouvelables (principalement biométhane)
  • La production nucléaire, décarbonée, est en chute rapide conformément à des décisions politiques.
  • Les énergies vertes (éolien et photovoltaïque) sont en croissance massive et produisent 26% du total. Elles ont nécessité un investissement de 350 milliards d’euros, qui a abouti essentiellement à réduire le nucléaire de 43%. Leur production reste intermittente, avec des conséquences importantes (voir ci-dessous).
  • Les énergies fossiles assurent 54% de la production, chiffre très élevé, dont seulement 10% pour le fioul et le gaz, mais 43% pour le charbon et le lignite, les pires émetteurs. Curieusement, on note que cette production fossile n’a baissé que de 6% en 15 ans.

Production France : valeurs annuelles

Comparons avec la situation en France, toujours en production annuelle, avec le même code de couleurs :



  • L’hydraulique est plus importante : en France, il y a beaucoup de montagnes.
  • Les « Autres » renouvelables sont très bas (principalement la biomasse)
  • La production nucléaire, décarbonée, est énorme et à peu près constante sur la période qui n’a connu ni mise en service, ni arrêt de réacteur.
  • Les énergies vertes (éolien et photovoltaïque) sont en croissance lente et ne produisent que 4% du total.
  • Les énergies fossiles n’assurent que 5% de la production, dont 2% pour le charbon, très émetteur, et 3% pour le fioul et le gaz. On note avec satisfaction que cette part, quoique déjà faible au départ, fortement baissé (- 45%) malgré un investissement modéré dans les énergies vertes.
Production : Comparaison Allemagne / France

Au global, les moyenne annuelles des émissions de CO2 par mégawattheure produit sont de
  • Allemagne :    500 Kg/MWh
  • France :          50 Kg/MWh
Soit un facteur 10 !

La comparaison des coûts est également édifiante :
€/MWh
France
Allemagne
Ecart All / Fra
Production
53,8
82,2
+53%
Consommateur final
138,9
260,3
+87%

Consommation électrique - Exportation

Comparons maintenant les exportations
Exportations
2000 (TWh)
2014 (TWh)
2014 (% production)
France
69
67
12 %
Allemagne
0
35
5,7 %

On constate que les exportations allemandes croissent avec le développement des énergies vertes très coûteuses, mais subventionnées par l’abonné, pendant que les exportations, françaises, logiquement plus élevées  en raison de la compétitivité de l’électronucléaire, sont stables. Pourquoi ?

Pour y répondre, il faut se rappeler :
  • que la compétitivité ne s’exprime pas par des prix moyens sur l’année, mais heure par heure sur un prix de marché très variable (0 à 1 000 €/MWh) selon la consommation ET selon la production des énergies fatales à écoulement prioritaire.
  • que les centrales à énergie verte ont un facteur de charge (= production annuelle réelle / production annuelle à pleine capacité) en Allemagne de l’ordre de 13% pour le photovoltaïque , et de 18% pour l’éolien terrestre.
  • En d’autres termes les capacités de production verte installées en Allemagne sont énormes : 55 GW en éolien, et 35 GW de solaire. Leur somme, soit 90 GW, excède la consommation allemande moyenne (70 GW), et a fortiori la consommation minimum, évaluée à 40 GW. Quand le vent est fort, et/ou le soleil brillant, la production verte excède fréquemment la consommation.
  • Face à cette situation, l’opérateur de réseau n’a d’autre choix que d’exporter les excédents de production à un prix bradé pour intéresser ses voisins, fût-il négatif (c’est arrivé !).
  • La différence entre ce prix bradé, et le tarif élevé garanti aux producteurs verts allemands, est à la charge par l’abonné allemand, comme pour la CSPE en France, en plus élevé.
  • Dans le graphe ci-dessous, l’analyse des flux transfrontaliers mensuels montre que,  au cours des mois où le vent en Allemagne a été supérieur à la moyenne, 80% de l’excédent éolien est exporté.
  • L’analyse des flux quotidiens, notamment en été, montre une excellente corrélation entre les exportations et la production solaire, évidemment de jour.
     Graphe origine BC Consult

Le graphe ci-dessus, emprunté à un site favorable au photovoltaïque, est relatif aux conditions particulièrement favorables du 1er au 3 octobre 2013, tous jours ouvrables. Il donne au cours de la période, les 3 courbes de :
  • La production photovoltaïque seule
  • La production totale photovoltaïque + éolienne
  • Le prix de marché de gros du MWh

On y voit clairement que :
  • En journée ouvrable hors pointes du matin et du soir, la corrélation entre la hausse de la production photovoltaïque et la baisse du prix du MWh montre que cette production est excédentaire, et donc majoritairement exportée.
  • La nuit, la corrélation entre une consommation naturellement faible, et la poursuite d’une production éolienne excédant les besoins, et donc exportée, tire les prix à un niveau d’autant plus bas que la demande dans les pays recevant ses exportations est également faible, autour des 20 €/Mwh, en dessous du prix accessible au nucléaire.
  • Les matins et soirs, où se situent les pointes quotidiennes (hors pointes hivernales), la remontée des prix vers 50 à 60 €/MWh, très au-dessus du prix de marché français au même moment montre une consommation nationale, mais celle-ci ne concerne que l’éolien, faute de soleil à ces heures.
  • En d’autres termes, la variabilité rapide et aléatoire des productions vertes ne leur permet pas de satisfaire une consommation également variable. L’ajustement est réalisé par l’exportation, ce qui a évidemment des limites ! On peut ainsi estimer, sans risque d’excès, que plus de la moitié de la production verte allemande est exportée.
  • Il s’en suit que la revendication, fréquemment exprimée, selon laquelle l'énergie électrique consommée en Allemagne résulte pour 22% de l’éolien et du photovoltaïque, est fausse : il s’agit en réalité de l’énergie produite. Partant d’une évaluation modérée selon laquelle 50% de ces énergies sont exportées, faute de pouvoir être consommées, car produites au mauvais moment, le ratio se réduit à environ 10% !

Conclusion : l’écologie ne peut s’affranchir de l’économie

Dans le contexte allemand, des véhicules à batteries n’apportent pas de baisse d’émissions de CO2, et les véhicules à hydrogène, handicapés par le médiocre rendement du cycle hydrogène, apportent une aggravation

Il faudrait finir par comprendre que l’écologie ne pourra être efficace que si elle veut bien envisager l’aspect économique des problèmes…

Un investissement de  350 milliards d’euros pour arriver à ces 10% verts pendant que les énergies fossiles assurent 56% de la consommation et maintiennent des émissions de CO2 très élevées, et à un prix de l’énergie électrique proche du double de celui de la France, est évidemment un non-sens. Avec cette somme, il était possible, au choix :
  • De créer un parc électronucléaire à eau pressurisé (le plus sûr) de 20 EPR aux normes « post-Fukushima » d’une puissance dépassant les pointes de consommation allemandes (ce qui est superflu), avec zéro émission de CO2.
  • D’améliorer drastiquement l’isolation thermique de 10 millions de logement pour en diviser par deux la consommation énergétique à raison de 35 000 € par logement.
  • De construire 20 millions de véhicules sobres (hybrides légers de faible section, moteur à essence de cylindrée réduite) consommant 2 litres aux 100 km dans les conditions réelles d’utilisation, de large autonomie, et capables de circuler comme les autres aux vitesses autorisées.
  • Un panachage optimisé des trois suggestions ci-dessus.
Les écologistes sincères doivent comprendre que le coût maîtrisé de la transition énergétique est une condition sine qua non de son efficacité, et de sa vitesse de mise en œuvre réclamée par le GIEC. Il est à craindre que les écologistes politiques, aveuglés par leurs croyances, ne le comprennent pas avant très longtemps. Il vaudrait donc mieux n’écouter ni ces partis très minoritaires, ni les ONG dites écologistes qui ne représentent que leurs propres militants !

Jean TIROLE, prix Nobel d'économie 2015, fait dans son remarquable ouvrage "Economie du bien commun", le commentaire suivant, page 278: "Les Etats dépensent parfois jusqu'à 1000 € par tonne de carbone évitée (c'est le cas notamment de l'Allemagne, pays peu ensoleillé, avec des l'installation de photovoltaïque de première génération), alors que d'autres émissions pourraient être réduites à un coût de 10 € la tonne. Il s'agit d'une politique qualifiée d'écologiste par une vaste majorité d'observateurs, mais qui ne l'est pas vraiment : pour un coût identique, on aurait pu réduire les émissions de 100 tonnes au lieu d'une seule!"